scholarly journals Cost-Effective Condition Monitoring for Wind Turbines

2010 ◽  
Vol 57 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Wenxian Yang ◽  
P.J. Tavner ◽  
C.J. Crabtree ◽  
M. Wilkinson
Wind Energy ◽  
2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Nevena Perišić ◽  
Poul Henning Kirkegaard ◽  
Bo Juul Pedersen

Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


Author(s):  
Sandip Kale ◽  
S. N. Sapali

Micro wind turbines installed in various applications, experience average wind speed for most of the time during operations. Power produced by the wind turbine is proportional to the cubic power of the wind velocity and a small increase in wind velocity results increases power output significantly. The approach wind velocity can be increased by covering traditional wind turbine with a diffuser. Researchers are continuously working to develop a compact, lightweight, cost effective and feasible diffuser for wind turbines. The present work carried out to develop a diffuser with these stated objectives. A compact, lightweight inclined flanged diffuser developed for a micro wind turbine. Bare micro wind turbine and wind turbine covered with developed efficient inclined flanged diffuser tested in the field as per International Electrotechnical Commission (IEC) standards and results presented in the form of power curves. The prediction of annual energy production for both wind turbines determined as per IEC standards.


2018 ◽  
Vol 116 ◽  
pp. 107-122 ◽  
Author(s):  
Phong B. Dao ◽  
Wieslaw J. Staszewski ◽  
Tomasz Barszcz ◽  
Tadeusz Uhl

Sign in / Sign up

Export Citation Format

Share Document