monitoring technique
Recently Published Documents


TOTAL DOCUMENTS

959
(FIVE YEARS 156)

H-INDEX

33
(FIVE YEARS 4)

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 550
Author(s):  
Trung-Hau Nguyen ◽  
Thi Tuong Vy Phan ◽  
Thanh-Cao Le ◽  
Duc-Duy Ho ◽  
Thanh-Canh Huynh

This study investigates the dynamic characteristics of a smart PZT interface mounted on a prestressed anchorage to verify the numerical feasibility of the admittance-based anchor force monitoring technique. Firstly, the admittance-based anchor force monitoring technique through a single-mount PZT interface is outlined. The admittance response of the PZT interface-anchorage system is theoretically derived to show the proof-of-concept of the technique for anchor force monitoring. Secondly, a finite element model corresponding to a well-established experimental model in the literature is constructed. The effect of anchor force is equivalently treated by the contact stiffness and damping parameters at the bottom surface of the anchorage. Thirdly, the admittance and the impedance responses are numerically analyzed and compared with the experimental data to evaluate the accuracy of the numerical modelling technique. Fourthly, the local dynamics of the PZT interface are analyzed by modal analysis to determine vibration modes that are sensitive to the change in the contact stiffness (i.e., representing the anchor force). Finally, the admittance responses corresponding to the sensitive vibration modes are numerically analyzed under the change in the contact stiffness. The frequency shift and the admittance change are quantified by statistical damage indices to verify the numerical feasibility of the anchor force monitoring technique via the smart PZT interface. The study is expected to provide a reference numerical model for the design of the single-point mount PZT interface.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yan Wang ◽  
Xiaoming Wang ◽  
Zhehan Liu ◽  
Wei Tang ◽  
Jian Li ◽  
...  

Underwater nuclear explosions can be monitored in near real-time by the hydroacoustic network of the International Monitoring System (IMS) established by the Comprehensive Nuclear-Test-Ban Treaty (CTBT), which could also be used to monitor underground and atmospheric nuclear explosions. The equivalent is an important parameter for the nuclear explosions’ monitoring. The traditional equivalent estimation method is to calculate the bubble pulsation period, which is difficult to obtain satisfactory results under the current conditions. In this paper, based on the passive sonar equation and the conversion process of acoustic energy parameters in the hydroacoustic station, the threshold monitoring technique used for underwater explosion equivalent estimation was studied, which was not limited to the measurement conditions and calculation results of the bubble pulsation period. Through the analysis of practical monitoring data, estimation on the underwater explosion equivalent based on the threshold monitoring technique was verified to be able to reach the accuracy upper boundary of current methods and expand the measurement range to further ocean space, along with the real-time monitoring capability of IMS hydroacoustic stations which could be estimated by this method.


2021 ◽  
Author(s):  
Alain Protat ◽  
Valentin Louf ◽  
Joshua Soderholm ◽  
Jordan Brook ◽  
William Ponsonby

Abstract. This study uses weather radar observations collected from Research Vessel Investigator to evaluate the Australian weather radar network calibration monitoring technique that uses spaceborne radar observations from the NASA Global Precipitation Mission (GPM). Quantitative operational applications such as rainfall and hail nowcasting require a calibration accuracy of 1 dB for radars of the Australian network covering capital cities. Seven ground-based radars along the coast and the ship-based OceanPOL radar are first calibrated independently using GPM radar overpasses over a 3-month period. The calibration difference between the OceanPOL radar and each of the 7 operational radars is then estimated using collocated, gridded, radar observations to evaluate the accuracy of the GPM technique. For all seven radars the calibration difference with the ship radar lies within ±0.5 dB, therefore fulfilling the 1 dB requirement. This result validates the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks (provided that the spaceborne radar maintains a high calibration accuracy). The analysis of the day-to-day and hourly variability of calibration differences between the OceanPOL and Darwin (Berrimah) radars also demonstrates that quantitative comparisons of gridded radar observations can accurately track daily and hourly calibration differences between pairs of operational radars with overlapping coverage (daily and hourly standard deviations of ~ 0.3 dB and ~ 1 dB, respectively).


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5139
Author(s):  
Ehtasham Mustafa ◽  
Ramy S. A. Afia ◽  
Oumaima Nouini ◽  
Zoltán Ádám Tamus

In a nuclear power plant environment, low-voltage cables experience different stresses during their service life which challenge their integrity. A non-destructive and reliable condition monitoring technique is desired to determine the state of these low-voltage cables during service and for the life extension of nuclear power plants. Hence, in this research work, an EPR/CSPE-based low-voltage cable was exposed to γ-rays for five different absorbed doses. The overall behavior of the cable under stress was characterized by frequency and time domain electrical measurements (capacitance, tan δ, and Extended Voltage Response) and a mechanical measurement (elongation at break). Significant variations in the electrical parameters were observed, as was a decline in the elongation at break values. A strong correlation between the measurement methods was observed, showing the ability of the electrical methods to be adopted as a non-destructive condition monitoring technique.


2021 ◽  
Author(s):  
Tso-Kang Wang ◽  
Vahid Tavanashad ◽  
Akriti Tripathi ◽  
Rajan Kumar ◽  
Kourosh Shoele

Author(s):  
Joseph Elrassi ◽  
Gregory Morscher

Abstract Electrical resistance, also known as direct current potential drop (DCPD), has been demonstrated as an enabling means to monitor damage evolution in SiC-based ceramic matrix composites. For laminate composites, it has become apparent that the location and orientation of SiC fibers, free Si and in some cases insertion of C rods can greatly affect the measured resistance. In addition, the nature of crack growth through the different plies which consist of different constituents will have different effects on the change in resistance. Therefore, both experimental and modeling approaches as to the resistance and change in resistance for different laminate architectures based on the nature of constituent content and orientation are needed to utilize and optimize electrical resistance as a health-monitoring technique. In this work, unidirectional and cross-ply laminate composites have been analyzed using a ply-based electrical model. Based on a ply-level circuit model, the change in resistance was modeled for damage development. It is believed that this can serve as a basis for tailoring the architecture/constituent content to create a "smarter" composite.


Sign in / Sign up

Export Citation Format

Share Document