A Novel Power Distribution System Employing State of Available Power Estimation for a Hybrid Energy Storage System

2018 ◽  
Vol 65 (8) ◽  
pp. 6676-6685 ◽  
Author(s):  
Masoud Masih-Tehrani ◽  
Masoud Dahmardeh
2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Jiang ◽  
Zhiqi Xu ◽  
Bin Yu ◽  
Ke Sun ◽  
Kai Ren ◽  
...  

A hybrid energy storage system (HESS) consists of two or more types of energy storage components and the power electronics circuit to connect them. Therefore, the real-time capacity of this system highly depends on the state of the system and cannot be simply evaluated with traditional battery models. To tackle this challenge, an equivalent state of charge (ESOC) which reflects the remaining capacity of a HESS unit in a specific operation mode, is proposed in this paper. Furthermore, the proposed ESOC is applied to the control of the distributed HESS which contains several units with their own local targets. To optimally distribute the overall power target among these units, a sparse communication network-based hierarchical control framework is proposed. This framework considers the distributed control and optimal power distribution in the HESS from two aspects - the power output capability and the ESOC balance. Based on the primary droop control, the total power is allocated according to the maximum output capacity of each unit, and the secondary control is used to adjust the power from the perspective of ESOC balance. Therefore, each energy storage unit can be controlled to meet the local power demand of the microgrid. Simulation results based on MATLAB/Simulink verify the effectiveness of the application of the proposed equivalent SOC.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8312
Author(s):  
Weiyue Huo ◽  
Jihong Zhu ◽  
Jing Zhou

Due to the intermittence and randomness of the renewable energy, hybrid energy storage system is widely adopted to suppress the power fluctuation. Power distribution is crucial for the robust and efficient operation of hybrid energy system. This paper proposes an innovative framework for hybrid energy storage system power distribution combining main circuit topology, modulation method and power distribution strategy. Firstly, hybrid modulation strategy to realize power distribution in a single-phase inverter is introduced. Then, power load prediction and low frequency filter are utilized to generate references for power distribution. Finally, the simulation model is established to test the framework and the result demonstrates the superiority of the proposed framework. The mean absolute percent error of the proposed SSA-LSTM mdoel is 0.0955 and the prediciton error by 40% compared with conventional LSTM model. Additionally, the energy management framework can adjust the port power distribution ratio flexibily to significantly suppress the power fluctuation of the grid and the operation cost of the hybrid energy storage system by reducing the charge and discharge cycle of the battery.


Sign in / Sign up

Export Citation Format

Share Document