Pairing-Free Certificate-Based Searchable Encryption Supporting Privacy-Preserving Keyword Search Function for IIoTs

Author(s):  
Yang Lu ◽  
Jiguo Li ◽  
Fen Wang
2020 ◽  
Vol 5 (4) ◽  
pp. 391-418
Author(s):  
Mukti Padhya ◽  
Devesh C. Jinwala

Abstract The existing Key Aggregate Searchable Encryption (KASE) schemes allow searches on the encrypted dataset using a single query trapdoor, with a feature to delegate the search rights of multiple files using a constant size key. However, the operations required to generate the ciphertext and decrypt it in these schemes incur higher computational costs, due to the computationally expensive pairing operations in encryption/decryption. This makes the use of such schemes in resource-constrained devices, such as Radio Frequency Identification Devices, Wireless Sensor Network nodes, Internet of Things nodes, infeasible. Motivated with the goal to reduce the computational cost, in this paper, we propose a Revocable Online/Offline KASE (R-OO-KASE) scheme, based on the idea of splitting the encryption/decryption operations into two distinct phases: online and offline. The offline phase computes the majority of costly operations when the device is on an electrical power source. The online phase generates final output with the minimal computational cost when the message (or ciphertext) and keywords become known. In addition, the proposed scheme R-OO-KASE also offers multi-keyword search capability and allows the data owners to revoke the delegated rights at any point in time, the two features are not supported in the existing schemes. The security analysis and empirical evaluations show that the proposed scheme is efficient to use in resource-constrained devices and provably secure as compared to the existing KASE schemes.


2022 ◽  
pp. 107-131
Author(s):  
Dhruti P. Sharma ◽  
Devesh C. Jinwala

E-health is a cloud-based system to store and share medical data with the stakeholders. From a security perspective, the stored data are in encrypted form that could further be searched by the stakeholders through searchable encryption (SE). Practically, an e-health system with support of multiple stakeholders (that may work as either data owner [writer] or user [reader]) along with the provision of multi-keyword search is desirable. However, the existing SE schemes either support multi-keyword search in multi-reader setting or offer multi-writer, multi-reader mechanism along with single-keyword search only. This chapter proposes a multi-keyword SE for an e-health system in multi-writer multi-reader setting. With this scheme, any registered writer could share data with any registered reader with optimal storage-computational overhead on writer. The proposed scheme offers conjunctive search with optimal search complexity at server. It also ensures security to medical records and privacy of keywords. The theoretical and empirical analysis demonstrates the effectiveness of the proposed work.


Author(s):  
Wei Zhang ◽  
Jie Wu ◽  
Yaping Lin

Cloud computing has attracted a lot of interests from both the academics and the industries, since it provides efficient resource management, economical cost, and fast deployment. However, concerns on security and privacy become the main obstacle for the large scale application of cloud computing. Encryption would be an alternative way to relief the concern. However, data encryption makes efficient data utilization a challenging problem. To address this problem, secure and privacy preserving keyword search over large scale cloud data is proposed and widely developed. In this paper, we make a thorough survey on the secure and privacy preserving keyword search over large scale cloud data. We investigate existing research arts category by category, where the category is classified according to the search functionality. In each category, we first elaborate on the key idea of existing research works, then we conclude some open and interesting problems.


Author(s):  
Yinbin Miao ◽  
Ximeng Liu ◽  
Kim-Kwang Raymond Choo ◽  
Robert H. Deng ◽  
Jiguo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document