medical data
Recently Published Documents


TOTAL DOCUMENTS

2924
(FIVE YEARS 1084)

H-INDEX

51
(FIVE YEARS 14)

2022 ◽  
Vol 22 (2) ◽  
pp. 1-21
Author(s):  
Syed Atif Moqurrab ◽  
Adeel Anjum ◽  
Abid Khan ◽  
Mansoor Ahmed ◽  
Awais Ahmad ◽  
...  

Due to the Internet of Things evolution, the clinical data is exponentially growing and using smart technologies. The generated big biomedical data is confidential, as it contains a patient’s personal information and findings. Usually, big biomedical data is stored over the cloud, making it convenient to be accessed and shared. In this view, the data shared for research purposes helps to reveal useful and unexposed aspects. Unfortunately, sharing of such sensitive data also leads to certain privacy threats. Generally, the clinical data is available in textual format (e.g., perception reports). Under the domain of natural language processing, many research studies have been published to mitigate the privacy breaches in textual clinical data. However, there are still limitations and shortcomings in the current studies that are inevitable to be addressed. In this article, a novel framework for textual medical data privacy has been proposed as Deep-Confidentiality . The proposed framework improves Medical Entity Recognition (MER) using deep neural networks and sanitization compared to the current state-of-the-art techniques. Moreover, the new and generic utility metric is also proposed, which overcomes the shortcomings of the existing utility metric. It provides the true representation of sanitized documents as compared to the original documents. To check our proposed framework’s effectiveness, it is evaluated on the i2b2-2010 NLP challenge dataset, which is considered one of the complex medical data for MER. The proposed framework improves the MER with 7.8% recall, 7% precision, and 3.8% F1-score compared to the existing deep learning models. It also improved the data utility of sanitized documents up to 13.79%, where the value of the  k is 3.


Author(s):  
Janak Damre

Abstract: We've been hearing a lot about cryptocurrencies lately. With about 3,000 distinct cryptocurrencies on the market right now, it's evident that they're here to stay, despite their unpredictable nature. But did you realise that nearly all cryptocurrencies are based on the same idea? Blockchain technology underpins nearly all cryptocurrencies. Blockchain, also known as the shared ledger, is one of the most secure digital technologies due to its distributed nature. Keywords: Centralized & Decentralized, Blockchain, Solidity


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ana Carpio ◽  
Alejandro Simón ◽  
Alicia Torres ◽  
Luis F. Villa

AbstractMedical data often appear in the form of numerical matrices or sequences. We develop mathematical tools for automatic screening of such data in two medical contexts: diagnosis of systemic lupus erythematosus (SLE) patients and identification of cardiac abnormalities. The idea is first to implement adequate data normalizations and then identify suitable hyperparameters and distances to classify relevant patterns. To this purpose, we discuss the applicability of Plackett-Luce models for rankings to hyperparameter and distance selection. Our tests suggest that, while Hamming distances seem to be well adapted to the study of patterns in matrices representing data from laboratory tests, dynamic time warping distances provide robust tools for the study of cardiac signals. The techniques developed here may set a basis for automatic screening of medical information based on pattern comparison.


2022 ◽  
Vol 12 (2) ◽  
pp. 681
Author(s):  
JiHwan Lee ◽  
Seok Won Chung

Since its development, deep learning has been quickly incorporated into the field of medicine and has had a profound impact. Since 2017, many studies applying deep learning-based diagnostics in the field of orthopedics have demonstrated outstanding performance. However, most published papers have focused on disease detection or classification, leaving some unsatisfactory reports in areas such as segmentation and prediction. This review introduces research published in the field of orthopedics classified according to disease from the perspective of orthopedic surgeons, and areas of future research are discussed. This paper provides orthopedic surgeons with an overall understanding of artificial intelligence-based image analysis and the information that medical data should be treated with low prejudice, providing developers and researchers with insight into the real-world context in which clinicians are embracing medical artificial intelligence.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 476
Author(s):  
S. Manimurugan ◽  
Saad Almutairi ◽  
Majed Mohammed Aborokbah ◽  
C. Narmatha ◽  
Subramaniam Ganesan ◽  
...  

Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.


2022 ◽  
Author(s):  
Latha Banda ◽  
Karan Singh ◽  
Vikash Arya ◽  
Devendra Gautam ◽  
Ali Ahmadian

Abstract Social media is recent generation of Recommender Systems (RS). Health Care Recommender System (HCRS) term used to analyse the medical data and then predict the disease of a patient with the help of various techniques used in RS. To ensure the quality and trustworthiness of medical data, machine learning algorithms are applied. Even though, there is a much gap between health care diagnosis and IT solutions. To evade this gap, the hybrid Fuzzy-genetic approach is used in HCRS. In this, Genetic algorithm is used for similarity computations with the help of mutation and crossover operators. Later fuzzy rules are generated for the data set with the additional personalized information of a user. Considering these approaches, the proposed model enhances the quality of recommendation in HCRS.


Sign in / Sign up

Export Citation Format

Share Document