Differential $E$ -Field Coupling to Shielded $H$ -Field Probe in Near-Field Measurements and a Suppression Approach

2018 ◽  
Vol 67 (12) ◽  
pp. 2872-2880 ◽  
Author(s):  
Sen Yang ◽  
Qiaolei Huang ◽  
Guanghua Li ◽  
Reza Zoughi ◽  
David J. Pommerenke
2019 ◽  
Vol 9 (22) ◽  
pp. 4895 ◽  
Author(s):  
Jingxu Bai ◽  
Jiabei Fan ◽  
Liping Hao ◽  
Nicholas L. R. Spong ◽  
Yuechun Jiao ◽  
...  

We measure the near field distribution of a microwave horn with a resonant atomic probe. The microwave field emitted by a standard microwave horn is investigated utilizing Rydberg electromagnetically inducted transparency (EIT), an all-optical Rydberg detection, in a room temperature caesium vapor cell. The ground 6 S 1 / 2 , excited 6 P 3 / 2 , and Rydberg 56 D 5 / 2 states constitute a three-level system, used as an atomic probe to detect microwave electric fields by analyzing microwave dressed Autler–Townes (AT) splitting. We present a measurement of the electric field distribution of the microwave horn operating at 3.99 GHz in the near field, coupling the transition 56 D 5 / 2 → 57 P 3 / 2 . The microwave dressed AT spectrum reveals information on both the strength and polarization of the field emitted from the microwave horn simultaneously. The measurements are compared with field measurements obtained using a dipole metal probe, and with simulations of the electromagnetic simulated software (EMSS). The atomic probe measurement is in better agreement with the simulations than the metal probe. The deviation from the simulation of measurements taken with the atomic probe is smaller than the metal probe, improving by 1.6 dB. The symmetry of the amplitude distribution of the measured field is studied by comparing the measurements taken on either side of the field maxima.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Maria Antonia Maisto ◽  
Giovanni Leone ◽  
Adriana Brancaccio ◽  
Raffaele Solimene

2020 ◽  
Vol 9 (5) ◽  
pp. 305-312
Author(s):  
Ryan Cardman ◽  
Luís F. Gonçalves ◽  
Rachel E. Sapiro ◽  
Georg Raithel ◽  
David A. Anderson

AbstractWe present electric field measurements and imaging of a Yagi–Uda antenna near-field using a Rydberg atom–based radio frequency electric field measurement instrument. The instrument uses electromagnetically induced transparency with Rydberg states of cesium atoms in a room-temperature vapor and off-resonant RF-field–induced Rydberg-level shifts for optical SI-traceable measurements of RF electric fields over a wide amplitude and frequency range. The electric field along the antenna boresight is measured using the atomic probe at a spatial resolution of ${\lambda }_{RF}/2$ with electric field measurement uncertainties below 5.5%, an improvement to RF measurement uncertainties provided by existing antenna standards.


Author(s):  
Jung-Ick Moon ◽  
J.M. Kim ◽  
J.H. Yun ◽  
S.I. Jeon ◽  
C.J. Kim

Sign in / Sign up

Export Citation Format

Share Document