Toward Generalization of sEMG-Based Pattern Recognition: A Novel Feature Extraction for Gesture Recognition

Author(s):  
Cheng Shen ◽  
Zhongcai Pei ◽  
Weihai Chen ◽  
Jianhua Wang ◽  
Jianbin Zhang ◽  
...  
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 114
Author(s):  
Tiziano Zarra ◽  
Mark Gino K. Galang ◽  
Florencio C. Ballesteros ◽  
Vincenzo Belgiorno ◽  
Vincenzo Naddeo

Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools for which the primary application is the generation of odour metrics that are indicators of odour as perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of the acquired data, and the validation of the correlation of the odour metric are key topics to control in order to ensure a robust and reliable measurement. The research presents and discusses the use of different pattern recognition and feature extraction techniques in the elaboration and effectiveness of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and peak period from the original response curve, in collaboration with Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANN) as a pattern recognition algorithm, were investigated. Laboratory analyses were performed with real odour samples collected in a complex industrial plant, using an advanced smart IOMS. The results demonstrate the influence of the choice of method on the quality of the OCMM produced. The peak period in combination with the Artificial Neural Network (ANN) highlighted the best combination on the basis of high classification rates. The paper provides information to develop a solution to optimize the performance of IOMS.


2014 ◽  
Vol 608-609 ◽  
pp. 459-467 ◽  
Author(s):  
Xiao Yu Gu

The paper researches a recognition algorithm of modulation signal and modulation modes. The modulation modes to be recognized include 2ASK, 2FSK, 2PSK, 4ASK, 4FSK and 4PSK modulation. There are two methods recognizing modulation modes of digital signal, method based on decision theory and pattern-recognition method based on feature extraction. The method based on decision theory is not suitable for recognition with multiple modulation modes. The core of pattern recognition based on feature extraction is selection of feature parameters. So the paper uses the feature parameters with simple calculation, easy to be implemented and high recognition rate as the core. The extraction of feature parameters is based on instant feature of modulation signal after Hilbert transformation.


1996 ◽  
Vol 35 (6) ◽  
pp. 834-840 ◽  
Author(s):  
A. Rosemary Tate ◽  
Des Watson ◽  
Stephen Eglen ◽  
Theodores N. Arvanitis ◽  
E. Louise Thomas ◽  
...  

Author(s):  
Shivali Parkhedkar ◽  
Shaveri Vairagade ◽  
Vishakha Sakharkar ◽  
Bharti Khurpe ◽  
Arpita Pikalmunde ◽  
...  

In our proposed work we will accept the challenges of recognizing the words and we will work to win the challenge. The handwritten document is scanned using a scanner. The image of the scanned document is processed victimization the program. Each character in the word is isolated. Then the individual isolated character is subjected to “Feature Extraction” by the Gabor Feature. Extracted features are passed through KNN classifier. Finally we get the Recognized word. Character recognition is a process by which computer recognizes handwritten characters and turns them into a format which a user can understand. Computer primarily based pattern recognition may be a method that involves many sub process. In today’s surroundings character recognition has gained ton of concentration with in the field of pattern recognition. Handwritten character recognition is beneficial in cheque process in banks, form processing systems and many more. Character recognition is one in all the favored and difficult space in analysis. In future, character recognition creates paperless environment. The novelty of this approach is to achieve better accuracy, reduced computational time for recognition of handwritten characters. The proposed method extracts the geometric features of the character contour. These features are based on the basic line types that forms the character skeleton. The system offers a feature vector as its output. The feature vectors so generated from a training set, were then used to train a pattern recognition engine based on Neural Networks so that the system can be benchmarked. The algorithm proposed concentrates on the same. It extracts totally different line varieties that forms a specific character. It conjointly also concentrates on the point options of constant. The feature extraction technique explained was tested using a Neural Network which was trained with the feature vectors obtained from the proposed method.


2003 ◽  
Vol 15 (3) ◽  
pp. 278-285
Author(s):  
Daigo Misaki ◽  
◽  
Shigeru Aomura ◽  
Noriyuki Aoyama

We discuss effective pattern recognition for contour images by hierarchical feature extraction. When pattern recognition is done for an unlimited object, it is effective to see the object in a perspective manner at the beginning and next to see in detail. General features are used for rough classification and local features are used for a more detailed classification. D-P matching is applied for classification of a typical contour image of individual class, which contains selected points called ""landmark""s, and rough classification is done. Features between these landmarks are analyzed and used as input data of neural networks for more detailed classification. We apply this to an illustrated referenced book of insects in which much information is classified hierarchically to verify the proposed method. By introducing landmarks, a neural network can be used effectively for pattern recognition of contour images.


1997 ◽  
Author(s):  
Casimer M. DeCusatis ◽  
A. Abbatte ◽  
Daniel M. Litynski ◽  
Pankaj K. Das

Sign in / Sign up

Export Citation Format

Share Document