Analysis of Effect of Increased and Reduced Renal Sympathetic Nerve Activity on Arterial Blood Pressure by Using a Mathematical Model

Author(s):  
Fatih Karaaslan
1999 ◽  
Vol 77 (3) ◽  
pp. 211-215 ◽  
Author(s):  
Karim S Bandali ◽  
Uwe Ackermann

Atrial natriuretic peptide (ANP) can excite cardiac nerve endings and invoke a decrease in arterial blood pressure and a reduction in renal sympathetic nerve activity. Our laboratory has previously demonstrated that this renal depressor reflex was invoked by systemic injection of ANP and not by the direct application of ANP to the epicardium, a major locus for vagal afferents. We now examine whether inhibition of prostaglandin synthesis impairs reflex responses that are normally associated with ANP injections. Renal sympathetic nerve activity, arterial blood pressure, and heart rate were recorded in anesthetized rats. Indomethacin was used to inhibit prostaglandin synthesis through the cyclooxygenase pathway. The ANP-mediated decrease in arterial blood pressure and renal sympathetic nerve activity, observed when prostaglandin synthesis was inhibited, did not differ significantly from the decreases observed in these parameters when prostaglandin synthesis was not inhibited. Heart rate remained unchanged. Our results suggest that the sympatho-inhibitory effects of ANP do not require prostaglandins as intermediary compounds.Key words: sympathetic nervous system, renal nerves, prostaglandins.


2002 ◽  
Vol 282 (1) ◽  
pp. R122-R130 ◽  
Author(s):  
C. Dean ◽  
M. Bago

The role of 5-hydroxytryptamine type 1A (5-HT1A) receptors in the rostral ventrolateral medulla (RVLM) in the mediation of the sympathoinhibitory and hypotensive responses to severe hemorrhage was examined in pentobarbital sodium-anesthetized rats. The control response to hemorrhage (1 ml/min to 50 mmHg) consisted of a fall in arterial blood pressure and an initial baroreflex increase in renal sympathetic nerve activity followed after 2 min by a rapid decline in blood pressure accompanied by a decrease in renal sympathetic nerve activity. In response to hemorrhage in animals in which the specific 5-HT1A receptor antagonist WAY-100635 was microinjected into the pressor area of the RVLM, the fall in blood pressure was delayed and attenuated while renal sympathetic nerve activity was increased and maintained above baseline. In barodenervated animals with blockade of RVLM 5-HT1A receptors, there was no change in renal sympathetic nerve activity in response to hemorrhage. These data suggest that renal sympathoinhibition elicited in response to severe hemorrhage is mediated by 5-HT1A receptors in the RVLM.


2005 ◽  
Vol 289 (5) ◽  
pp. R1477-R1481 ◽  
Author(s):  
C. Dean

Activation of neurons in the ventrolateral region of the periaqueductal gray (vlPAG) can elicit a decrease in renal sympathetic nerve activity and blood pressure. The present study investigated whether the vlPAG-evoked sympathoinhibitory response depends on neurons in the caudal midline medulla (CMM). In pentobarbital-anesthetized rats, activation of neurons in the vlPAG evoked a decrease in renal sympathetic nerve activity to 29.4 ± 4.8% below baseline levels and arterial blood pressure fell 8.9 ± 1.6 mmHg ( n = 20). Microinjection of the GABA agonist muscimol into sympathoinhibitory regions of the CMM significantly attenuated the vlPAG-evoked sympathoinhibition to 17.9 ± 4.1% below baseline and the depressor response to 4.3 ± 1.2 mmHg. At 65% (13/20) of the sites examined, the vlPAG-evoked sympathoinhibition was responsive to CMM muscimol microinjection and attenuated from 34.2% to 11.5%, with the depressor response reduced from 14.8 to 3 mmHg. Microinjection of muscimol at the remaining 35% of the CMM sympathoinhibitory sites was ineffective on the vlPAG-evoked sympathoinhibition and depressor response. These data indicate that sympathoinhibitory and hypotensive responses elicited by activation of neurons in the vlPAG can be mediated by neurons in the sympathoinhibitory region of the CMM. The finding that the vlPAG-evoked response is not affected by muscimol at all CMM sympathoinhibitory sites also suggests that sympathoinhibitory sites in the CMM are not homogeneous and can mediate functionally different responses.


1997 ◽  
Vol 273 (3) ◽  
pp. R864-R872 ◽  
Author(s):  
K. Zhang ◽  
W. G. Mayhan ◽  
K. P. Patel

The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in the control of sympathetic outflow. The goal of the present study was to examine the role of nitric oxide within the PVN in the regulation of renal sympathetic nerve activity. Renal sympathetic nerve discharge (RSND), arterial blood pressure, and heart rate in response to the microinjection of nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 50, 100, and 200 pmol) into the PVN were measured in male Sprague-Dawley rats. Microinjection of L-NMMA elicited an increase in RSND, arterial blood pressure, and heart rate. Administration of NG-monomethyl-D-arginine (D-NMMA, 50-200 pmol) into the PVN did not change RSND, arterial pressure, or heart rate. Similarly, microinjection of another nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 nmol) also elicited an increase in RSND, arterial blood pressure, and heart rate. L-Arginine (100 nmol) reversed the effects of L-NAME in the PVN. Furthermore, microinjection of sodium nitroprusside (SNP; 50, 100, and 200 nmol) into the PVN elicited a significant decrease in RSND, arterial blood pressure, and heart rate. These effects of L-NMMA, L-NAME, and SNP on RSND and arterial blood pressure were not mediated by their vasoactive action because microinjection of phenylephrine and hydralazine did not elicit similar respective changes. In conclusion, our data indicate that endogenous nitric oxide within the PVN regulates sympathetic outflow via some inhibitory mechanisms. Altered nitric oxide mechanisms within the PVN may contribute to elevated sympathetic nerve activity observed during various diseases states such as heart failure and hypertension.


2004 ◽  
Vol 286 (4) ◽  
pp. R719-R725 ◽  
Author(s):  
Sean D. Stocker ◽  
Kimberly J. Keith ◽  
Glenn M. Toney

The present study was performed to determine whether sympathetic outflow and arterial blood pressure in water-deprived rats are dependent on the ongoing neuronal activity of the hypothalamic paraventricular nucleus (PVN). Renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate were recorded in urethane-α-chloralose-anesthetized rats that were deprived of water but not food for 48 h before experiments. Acute inhibition of the PVN by bilateral microinjection of the GABAA agonist muscimol (100 pmol/side) significantly decreased RSNA in water-deprived rats (-26.7 ± 4.7%, n = 7) but was without effect in control rats (1.3 ± 6.3%, n = 7). Similarly, injection of muscimol produced a greater decrease in MAP in water-deprived rats than in control rats (-46 ± 3 vs. -16 ± 3 mmHg, respectively), although baseline MAP was not different between groups (105 ± 4 vs. 107 ± 4 mmHg, respectively). Neither bilateral microinjection of isotonic saline vehicle (100 nl/side) into the PVN nor muscimol (100 pmol/side) outside the PVN altered RSNA or MAP in either group. In addition, ganglionic blockade with hexamethonium (30 mg/kg iv) significantly decreased MAP in both groups; however, the decrease in MAP was significantly greater in water-deprived rats than in control rats (62 ± 2 vs. 48 ± 2 mmHg, respectively). Collectively, these findings suggest that sympathetic outflow contributes more to the maintenance of blood pressure in the water-deprived rat, and this depends, at least partly, on the ongoing activity of PVN neurons.


2012 ◽  
Vol 303 (1) ◽  
pp. R30-R38 ◽  
Author(s):  
Lindsea C. Booth ◽  
Simon C. Malpas ◽  
Carolyn J. Barrett ◽  
Sarah-Jane Guild ◽  
Alistair J. Gunn ◽  
...  

The sympathetic nervous system (SNS) is an important mediator of fetal adaptation to life-threatening in utero challenges, such as asphyxia. Although the SNS is active well before term, SNS responses mature significantly over the last third of gestation, and its functional contribution to adaptation to asphyxia over this critical period of life remains unclear. Therefore, we examined the hypotheses that increased renal sympathetic nerve activity (RSNA) is the primary mediator of decreased renal vascular conductance (RVC) during complete umbilical cord occlusion in preterm fetal sheep (101 ± 1 days; term 147 days) and that near-term fetuses (119 ± 0 days) would have a more rapid initial vasomotor response, with a greater increase in RSNA. Causality of the relationship of RSNA and RVC was investigated using surgical (preterm) and chemical (near-term) denervation. All fetal sheep showed a significant increase in RSNA with occlusion, which was more sustained but not significantly greater near-term. The initial fall in RVC was more rapid in near-term than preterm fetal sheep and preceded the large increase in RSNA. These data suggest that although RSNA can increase as early as 0.7 gestation, it is not the primary determinant of RVC. This finding was supported by denervation studies. Interestingly, chemical denervation in near-term fetal sheep was associated with an initial fall in blood pressure, suggesting that by 0.8 gestation sympathetic innervation of nonrenal vascular beds is critical to maintain arterial blood pressure during the rapid initial adaptation to asphyxia.


Sign in / Sign up

Export Citation Format

Share Document