Conformational Space Sampling Method Using Multi-Subpopulation Differential Evolution for De novo Protein Structure Prediction

2017 ◽  
Vol 16 (7) ◽  
pp. 618-633 ◽  
Author(s):  
Xiao-Hu Hao ◽  
Gui-Jun Zhang ◽  
Xiao-Gen Zhou
2011 ◽  
Vol 79 (8) ◽  
pp. 2403-2417 ◽  
Author(s):  
Juyong Lee ◽  
Jinhyuk Lee ◽  
Takeshi N. Sasaki ◽  
Masaki Sasai ◽  
Chaok Seok ◽  
...  

2019 ◽  
Vol 36 (8) ◽  
pp. 2443-2450 ◽  
Author(s):  
Jun Liu ◽  
Xiao-Gen Zhou ◽  
Yang Zhang ◽  
Gui-Jun Zhang

Abstract Motivation Regions that connect secondary structure elements in a protein are known as loops, whose slight change will produce dramatic effect on the entire topology. This study investigates whether the accuracy of protein structure prediction can be improved using a loop-specific sampling strategy. Results A novel de novo protein structure prediction method that combines global exploration and loop perturbation is proposed in this study. In the global exploration phase, the fragment recombination and assembly are used to explore the massive conformational space and generate native-like topology. In the loop perturbation phase, a loop-specific local perturbation model is designed to improve the accuracy of the conformation and is solved by differential evolution algorithm. These two phases enable a cooperation between global exploration and local exploitation. The filtered contact information is used to construct the conformation selection model for guiding the sampling. The proposed CGLFold is tested on 145 benchmark proteins, 14 free modeling (FM) targets of CASP13 and 29 FM targets of CASP12. The experimental results show that the loop-specific local perturbation can increase the structure diversity and success rate of conformational update and gradually improve conformation accuracy. CGLFold obtains template modeling score ≥ 0.5 models on 95 standard test proteins, 7 FM targets of CASP13 and 9 FM targets of CASP12. Availability and implementation The source code and executable versions are freely available at https://github.com/iobio-zjut/CGLFold. Supplementary information Supplementary data are available at Bioinformatics online.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123998 ◽  
Author(s):  
Saulo H. P. de Oliveira ◽  
Jiye Shi ◽  
Charlotte M. Deane

2009 ◽  
Vol 393 (1) ◽  
pp. 249-260 ◽  
Author(s):  
David E. Kim ◽  
Ben Blum ◽  
Philip Bradley ◽  
David Baker

2019 ◽  
Author(s):  
Rebecca F. Alford ◽  
Patrick J. Fleming ◽  
Karen G. Fleming ◽  
Jeffrey J. Gray

ABSTRACTProtein design is a powerful tool for elucidating mechanisms of function and engineering new therapeutics and nanotechnologies. While soluble protein design has advanced, membrane protein design remains challenging due to difficulties in modeling the lipid bilayer. In this work, we developed an implicit approach that captures the anisotropic structure, shape of water-filled pores, and nanoscale dimensions of membranes with different lipid compositions. The model improves performance in computational bench-marks against experimental targets including prediction of protein orientations in the bilayer, ΔΔG calculations, native structure dis-crimination, and native sequence recovery. When applied to de novo protein design, this approach designs sequences with an amino acid distribution near the native amino acid distribution in membrane proteins, overcoming a critical flaw in previous membrane models that were prone to generating leucine-rich designs. Further, the proteins designed in the new membrane model exhibit native-like features including interfacial aromatic side chains, hydrophobic lengths compatible with bilayer thickness, and polar pores. Our method advances high-resolution membrane protein structure prediction and design toward tackling key biological questions and engineering challenges.Significance StatementMembrane proteins participate in many life processes including transport, signaling, and catalysis. They constitute over 30% of all proteins and are targets for over 60% of pharmaceuticals. Computational design tools for membrane proteins will transform the interrogation of basic science questions such as membrane protein thermodynamics and the pipeline for engineering new therapeutics and nanotechnologies. Existing tools are either too expensive to compute or rely on manual design strategies. In this work, we developed a fast and accurate method for membrane protein design. The tool is available to the public and will accelerate the experimental design pipeline for membrane proteins.


2016 ◽  
Vol 11 (3) ◽  
pp. 149-155
Author(s):  
Sandhya P.N. Dubey ◽  
N. Gopalakrishna Kini ◽  
M. Sathish Kumar ◽  
S. Balaji ◽  
M.P. Sumana Bha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document