scholarly journals A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity

2006 ◽  
Vol 17 (1) ◽  
pp. 211-221 ◽  
Author(s):  
G. Indiveri ◽  
E. Chicca ◽  
R. Douglas
2020 ◽  
Author(s):  
Eric C. Wong

ABSTRACTThe brain is thought to represent information in the form of activity in distributed groups of neurons known as attractors, but it is not clear how attractors are formed or used in processing. We show here that in a randomly connected network of simulated spiking neurons, periodic stimulation of neurons with distributed phase offsets, along with standard spike timing dependent plasticity (STDP), efficiently creates distributed attractors. These attractors may have a consistent ordered firing pattern, or become disordered, depending on the conditions. We also show that when two such attractors are stimulated in sequence, the same STDP mechanism can create a directed association between them, forming the basis of an associative network. We find that for an STDP time constant of 20ms, the dependence of the efficiency of attractor creation on the driving frequency has a broad peak centered around 8Hz. Upon restimulation, the attractors selfoscillate, but with an oscillation frequency that is higher than the driving frequency, ranging from 10-100Hz.


2021 ◽  
pp. 1-22
Author(s):  
Eric C. Wong

The brain is thought to represent information in the form of activity in distributed groups of neurons known as attractors. We show here that in a randomly connected network of simulated spiking neurons, periodic stimulation of neurons with distributed phase offsets, along with standard spike-timing-dependent plasticity (STDP), efficiently creates distributed attractors. These attractors may have a consistent ordered firing pattern or become irregular, depending on the conditions. We also show that when two such attractors are stimulated in sequence, the same STDP mechanism can create a directed association between them, forming the basis of an associative network. We find that for an STDP time constant of 20 ms, the dependence of the efficiency of attractor creation on the driving frequency has a broad peak centered around 8 Hz. Upon restimulation, the attractors self-oscillate, but with an oscillation frequency that is higher than the driving frequency, ranging from 10 to 100 Hz.


2013 ◽  
Vol 9 (2) ◽  
pp. e1002897 ◽  
Author(s):  
Robert R. Kerr ◽  
Anthony N. Burkitt ◽  
Doreen A. Thomas ◽  
Matthieu Gilson ◽  
David B. Grayden

2021 ◽  
Vol 12 (03) ◽  
pp. 25-33
Author(s):  
Mario Antoine Aoun

We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls under our long-term investigation of STDP and chaos theory.


Sign in / Sign up

Export Citation Format

Share Document