Knowledge Transfer via Decomposing Essential Information in Convolutional Neural Networks

Author(s):  
Seunghyun Lee ◽  
Byung Cheol Song
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 198600-198614
Author(s):  
Masood Aslam ◽  
Tariq M. Khan ◽  
Syed Saud Naqvi ◽  
Geoff Holmes ◽  
Rafea Naffa

Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 333
Author(s):  
Ilias Theodorakopoulos ◽  
Foteini Fotopoulou ◽  
George Economou

In this work, we propose a mechanism for knowledge transfer between Convolutional Neural Networks via the geometric regularization of local features produced by the activations of convolutional layers. We formulate appropriate loss functions, driving a “student” model to adapt such that its local features exhibit similar geometrical characteristics to those of an “instructor” model, at corresponding layers. The investigated functions, inspired by manifold-to-manifold distance measures, are designed to compare the neighboring information inside the feature space of the involved activations without any restrictions in the features’ dimensionality, thus enabling knowledge transfer between different architectures. Experimental evidence demonstrates that the proposed technique is effective in different settings, including knowledge-transfer to smaller models, transfer between different deep architectures and harnessing knowledge from external data, producing models with increased accuracy compared to a typical training. Furthermore, results indicate that the presented method can work synergistically with methods such as knowledge distillation, further increasing the accuracy of the trained models. Finally, experiments on training with limited data show that a combined regularization scheme can achieve the same generalization as a non-regularized training with 50% of the data in the CIFAR-10 classification task.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Edgar Medina ◽  
Roberto Campos ◽  
Jose Gabriel R. C. Gomes ◽  
Mariane R. Petraglia ◽  
Antonio Petraglia

Sign in / Sign up

Export Citation Format

Share Document