Finite-Time Synchronization of Neural Networks With Infinite Discrete Time-Varying Delays and Discontinuous Activations

Author(s):  
Yin Sheng ◽  
Zhigang Zeng ◽  
Tingwen Huang
2021 ◽  
Vol 40 (1) ◽  
pp. 1695-1712
Author(s):  
Kaifang Fei ◽  
Minghui Jiang ◽  
Yadan Zhang

In this paper, the matters of dissipativity and finite time synchronization for memristor-based neural networks (MNNs) with mixed time-varying discontinuities are investigated. Firstly, under the framework of extending Filippov differential inclusion theory, several effective new criteria are derived. Then, the global dissipativity of Filippov solution to neural networks is proved by using generalized Halanay inequality and matrix measure method. Secondly, some novel sufficient conditions are introduced to guarantee the finite-time synchronization of the drive-response MNNs based on a simple Lyapunov function and two different feedback controllers. Finally, several numerical examples are given to verify the validity of the theoretical results.


2021 ◽  
pp. 1-14
Author(s):  
Zhenjie Wang ◽  
Wenxia Cui ◽  
Wenbin Jin

This paper mainly considers the finite-time synchronization problem of fuzzy inertial cellular neural networks (FICNNs) with time-varying delays. By constructing the suitable Lyapunov functional, and using integral inequality techniques, several sufficient criteria have been proposed to ensure the finite-time synchronization for the addressed (FICNNs). Without applying the known finite-time stability theorem, which is widely used to solve the finite-time synchronization problems for (FICNNs). In this paper, the proposed method is relatively convenient to solve finite-time synchronization problem of the addressed system, this paper extends the research works on the finite-time synchronization of (FICNNs). Finally, numerical simulations illustrated verify the effectiveness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document