scholarly journals Dosimetry of Thermal Neutron Beamlines at a Pulsed Spallation Source for Application to the Irradiation of Microelectronics

Author(s):  
Carlo Cazzaniga ◽  
Davide Raspino ◽  
G. Jeff Sykora ◽  
Christopher D. Frost
2021 ◽  
Vol 136 (7) ◽  
Author(s):  
A. Muraro ◽  
G. Claps ◽  
G. Croci ◽  
C. C. Lai ◽  
R. De Oliveira ◽  
...  

AbstractA new position-sensitive thermal neutron detector based on boron-coated converters has been developed as an alternative to today’s standard $$^3\mathrm{He}$$ 3 He -based technology for application to thermal neutron scattering. The key elements of the development are the boron-coated GEM foils (Sauli in Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 386:531, 1997) that are used as a multi-layer neutron converter via the $$^{10}\mathrm{B}(n,\alpha )^7\mathrm{Li}$$ 10 B ( n , α ) 7 Li reaction together with an efficient collection of the produced secondary electrons. This paper reports the test performed on a 3 layers converter prototype coupled to a GEMPix detector (Murtas in Radiat Meas 138:106421, 2020), carried out in order to study the possibility to produce a large-scale multi-layer neutron detector capable to reach high detection efficiency with high spatial resolution and able to sustain the high neutron flux expected in the new neutron spallation source under development like the ESS.


2019 ◽  
Vol 3 (3) ◽  
pp. 16 ◽  
Author(s):  
Sonja Holm-Dahlin ◽  
Martin Andreas Olsen ◽  
Mads Bertelsen ◽  
Jonas Okkels Birk ◽  
Kim Lefmann

We describe a systematic approach for the design of long, ballistic cold, and thermal neutron guides for the European Spallation Source (ESS). The guides investigated in this work are 170 m long and are required to have a narrowing point with room for a pulse shaping chopper placed 6 m from the moderator. In addition, most guides avoid line-of-sight from the moderator to the sample. The guides are optimized in order to find a reasonable trade-off between neutronics performance and construction price. The geometries simulated are closely related to the thermal-neutron multi-length-scale diffractometer HEIMDAL and the cold-neutron multi-analyser spectrometer BIFROST. For the cold-neutron guide an inexpensive solution was found that maintains good transport properties, while avoiding line-of-sight. However, for the thermal-neutron guide the losses when avoiding line-of-sight are large and it seems a good choice to stay in line-of-sight, even though this will increase both the shielding costs and fast-neutron background. The results are of general relevance for the understanding of the relation between transport, background, and price of long neutron guides.


Sign in / Sign up

Export Citation Format

Share Document