spallation source
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 67)

H-INDEX

20
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Sze-Chun Yiu ◽  
Bernhard Meirose ◽  
Joshua Barrow ◽  
Christian Bohm ◽  
Gustaaf Brooijmans ◽  
...  

The goal of the HIBEAM/NNBAR program is to search for baryon number violation via the conversion or oscillation of neutrons into sterile neutrons and/or antineutrons at the European Spallation Source. A key experimental component of the program is the construction of an annihilation detector to directly observe the production of an antineutron following the oscillation. Design studies for the annihilation detector are presented. The predicted response of the detector models are studied using Geant4 simulations made with Monte Carlo simulations of the annihilation signal topology and cosmic ray backgrounds. Particle identification and sensitive discriminating observables, such as invariant mass and sphericity, are shown.


2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Félix J. Villacorta ◽  
Damián Martín Rodríguez ◽  
Mads Bertelsen ◽  
Heloisa N. Bordallo

To boost the science case of MIRACLES, the time-of-flight backscattering spectrometer at the European Spallation Source (ESS), an optimized neutron guide system, is proposed. This systematic study resulted in an enhancement in the transport of cold neutrons, compared with the previous conceptual design, with wavelengths ranging from λ = 2 Å to 20 Å along the 162.5-m distance from source to sample. This maintained the undisturbed main focus of the instrument, viz, to carry out quasielastic and inelastic neutron scattering (QENS and INS) experiments on a large dynamic range and for both energy-gain and energy-loss sides. To improve the collection of cold neutrons from the source and direct them to the sample position, the vertical geometry was adjusted to an adapted version of a ballistic elliptical profile. Its horizontal geometry was conceived to: (i) keep the high-resolution performance of the instrument, and (ii) minimize the background originating from fast and thermal neutrons. To comply with the first requirement, a narrow guide section at the pulse shaping chopper position has been implemented. To fulfil the second, a curved guide segment has been chosen to suppress neutrons with wavelengths λ < 2 Å. Subsequent tailoring of the phase space provided an efficient transport of cold neutrons along the beamline to reach a 3 × 3 cm2 sample. Finally, additional calculations were performed to present a potential upgrade, with the exchange of the final segment, to focus on samples of approximately 1 × 1 cm2; the proposal anticipates a flux increase of 70% in this 1 cm2 sample area.


2021 ◽  
pp. 1-18
Author(s):  
Masatoshi Arai ◽  
Ken H. Andersen ◽  
Dimitri N. Argyriou ◽  
Werner Schweika ◽  
Luca Zanini ◽  
...  

The general performance of diffractometers at the first long pulse spallation source ESS, is compared with their counterparts at J-PARC, a short pulse spallation source. The difference in the inherent pulse structure of these neutron sources presents opportunities for new concepts for instrumentation, where performance does not scale simply with source power. The article describes advantages and disadvantages of those diffractometers, adapting to the very different source characteristics. We find that the two sources offer comparable performance in flux and resolution when operating in high-resolution mode. ESS offers significant advantages in tunability and flexibility, notably in the ability to relax resolution in order to increase flux for a given experiment. The slow repetition rate of ESS favors long instruments. On the other hand, J-PARC instruments perform very well in spite of the lower source power and allow better access to epithermal neutrons, of particular interest for PDF analysis of diffraction data.


Author(s):  
Daniela Kiselev ◽  
Pierre-André Duperrex ◽  
Sven Jollet ◽  
Stefan Joray ◽  
Daniel Laube ◽  
...  

Two target stations in the 590 MeV proton beamline of the High Intensity Proton Accelerator (HIPA) at the Paul Scherrer Institut (PSI) produce pions and muons for seven secondary beamlines, leading to several experimental stations. The two target stations are 18 m apart. Target M is a graphite target with an effective thickness of 5 mm, Target E is a graphite wheel with a thickness of 40 mm or 60 mm. Due to the spreading of the beam in the thick target, a high power collimator system is needed to shape the beam for further transport. The beam is then transported to either the SINQ target, a neutron spallation source, or stopped in the beam dump, where about 450 kW beam power is dissipated. Targets, collimators and beam dumps are described.


Nukleonika ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 99-102
Author(s):  
Karol S. Szymczyk ◽  
Sławomir Wronka

Abstract The purpose of this paper is to present the Monte-Carlo calculations performed to design a special element called gamma blocker (GB), necessary to stop the gamma radiation in the Accelerator-to-Target (A2T) section of European Spallation Source (ESS) linac. Very high levels of gamma radiation emitted backward from the activated target through the beam pipe could effectively block any human intervention close to the beam transport system. The residual dose rate in the linac tunnel was calculated without and with different GBs as a function of time. The final GB material and dimensions are proposed.


2021 ◽  
Vol 136 (7) ◽  
Author(s):  
A. Muraro ◽  
G. Claps ◽  
G. Croci ◽  
C. C. Lai ◽  
R. De Oliveira ◽  
...  

AbstractA new position-sensitive thermal neutron detector based on boron-coated converters has been developed as an alternative to today’s standard $$^3\mathrm{He}$$ 3 He -based technology for application to thermal neutron scattering. The key elements of the development are the boron-coated GEM foils (Sauli in Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 386:531, 1997) that are used as a multi-layer neutron converter via the $$^{10}\mathrm{B}(n,\alpha )^7\mathrm{Li}$$ 10 B ( n , α ) 7 Li reaction together with an efficient collection of the produced secondary electrons. This paper reports the test performed on a 3 layers converter prototype coupled to a GEMPix detector (Murtas in Radiat Meas 138:106421, 2020), carried out in order to study the possibility to produce a large-scale multi-layer neutron detector capable to reach high detection efficiency with high spatial resolution and able to sustain the high neutron flux expected in the new neutron spallation source under development like the ESS.


2021 ◽  
Vol 11 (11) ◽  
pp. 5116
Author(s):  
Matthias Kühnhammer ◽  
Tobias Widmann ◽  
Lucas P. Kreuzer ◽  
Andreas J. Schmid ◽  
Lars Wiehemeier ◽  
...  

The European Spallation Source (ESS), which is under construction in Lund (Sweden), will be the leading and most brilliant neutron source and aims at starting user operation at the end of 2023. Among others, two small angle neutron scattering (SANS) machines will be operated. Due to the high brilliance of the source, it is important to minimize the downtime of the instruments. For this, a collaboration between three German universities and the ESS was initialized to develop and construct a unified sample environment (SE) system. The main focus was set on the use of a robust carrier system for the different SEs, which allows setting up experiments and first prealignment outside the SANS instruments. This article covers the development and construction of a SE for SANS experiments with foams, which allows measuring foams at different drainage states and the control of the rate of foam formation, temperature, and measurement position. The functionality under ESS conditions was tested and neutron test measurement were carried out.


2021 ◽  
pp. 1-10
Author(s):  
Jose Ignacio Marquez Damian ◽  
Douglas D. DiJulio ◽  
Günter Muhrer

Transport calculations for neutronic design require accurate nuclear data and validated computational tools. In the Spallation Physics Group, at the European Spallation Source, we perform shielding and neutron beam calculations to help the deployment of the instrument suite for the current high brilliance (top) moderator, as well for the design of the high intensity bottom moderator, currently under study for the facility. This work includes providing the best available nuclear data in addition to improving models and tools when necessary. In this paper we present the status of these activities, which include a set of thermal scattering kernels for moderator, reflector, and structural materials, the development of new kernels for beryllium considering crystallite size effects, nanodiamonds, liquid hydrogen and deuterium based on path integral molecular dynamics, and the use of the software package NCrystal to assist the development of nuclear data in the framework of the new HighNESS project.


Sign in / Sign up

Export Citation Format

Share Document