scholarly journals Modeling Dual Active Bridge Converters in DC Distribution Systems

2019 ◽  
Vol 34 (6) ◽  
pp. 5867-5879 ◽  
Author(s):  
Jacob A. Mueller ◽  
Jonathan W. Kimball
2019 ◽  
Vol 13 (16) ◽  
pp. 3713-3724 ◽  
Author(s):  
Meng Li ◽  
Ke Jia ◽  
Tianshu Bi ◽  
Congbo Wang ◽  
Rui Zhu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Sara J. Ríos ◽  
Daniel J. Pagano ◽  
Kevin E. Lucas

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.


2014 ◽  
Vol 5 (5) ◽  
pp. 2473-2475 ◽  
Author(s):  
Josep M. Guerrero ◽  
Ali Davoudi ◽  
Fqarrokh Aminifar ◽  
Juri Jatskevich ◽  
Hiroaki Kakigano

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 775
Author(s):  
Sheng-Yu Tseng ◽  
Jun-Hao Fan

Due to the advantages of power supply systems using the DC distribution method, such as a conversion efficiency increase of about 5–10%, a cost reduction of about 15–20%, etc., AC power distribution systems will be replaced by DC power distribution systems in the future. This paper adopts different converters to generate DC distribution system: DC/DC converter with PV arrays, power factor correction with utility line and full-bridge converter with multiple input sources. With this approach, the proposed full-bridge converter with soft-switching features for generating a desired voltage level in order to transfer energy to the proposed DC distribution system. In addition, the proposed soft-switching full-bridge converter is used to generate the DC voltage and is applied to balance power between the PV arrays and the utility line. Due to soft-switching features, the proposed full-bridge converter can be operated with zero-voltage switching (ZVS) at the turn-on transition to increase conversion efficiency. Finally, a prototype of the proposed full-bridge converter under an input voltage of DC 48 V, an output voltage of 24 V, a maximum output current of 21 A and a maximum output power of 500 W was implemented to prove its feasibility. From experimental results, it can be found that its maximum conversion efficiency is 92% under 50% of full-load conditions. It was shown to be suitable for DC distribution applications.


Sign in / Sign up

Export Citation Format

Share Document