A High Step-Up/Step-Down Input-Parallel Output-Series ZVS Bidirectional Converter With Coupled Inductors

Author(s):  
Mohammad Reza Mohammadi ◽  
Afshin Amoorezaei ◽  
Sayed Ali Khajehoddin ◽  
Kambiz Moez
2020 ◽  
Vol 13 (17) ◽  
pp. 3987-3998
Author(s):  
Tohid Nouri ◽  
Mahdi Shaneh
Keyword(s):  

Author(s):  
Saif Al-Zubaidi ◽  
Mohammed H Alkhafaji ◽  
Wael N Al-kawaz
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1132 ◽  
Author(s):  
Yu-En Wu ◽  
Kai-Cheng Hsu

This study proposes a novel three-port bidirectional converter with a three-winding coupled inductor and applies it to a photovoltaic (PV) system to step up the PV system output to a dc bus or dc load while charging the battery. When the PV output is insufficient, battery voltage is stepped up to the dc bus voltage, and when the dc bus has excess energy, it is stepped down to charge the battery. Thus, a three-port bidirectional high step-up/step-down converter is achieved. A three-winding common core coupled inductor is designed and implemented in the converter, and a full-wave doubler circuit is used on the high-voltage side to achieve a high step-up effect. Power switches and diodes in the circuit are shared to achieve bidirectional operation. The output capacitors recover secondary-side leakage inductance energy in the step-up mode, and the third winding can be used to recover primary-side leakage inductance energy to reduce the voltage spike on switching in order to improve the converter’s conversion efficiency. A 500-W three-port bidirectional converter is implemented to verify the feasibility and practicability of the proposed topology. According to the measurement results, the highest efficiency of the PV step-up mode is 95.3%, the highest efficiency of the battery step-up mode is 94.1%, and the highest efficiency of the step-down mode is 94.8%.


2019 ◽  
Vol 34 (11) ◽  
pp. 10936-10944 ◽  
Author(s):  
Marziyeh Hajiheidari ◽  
Hosein Farzanehfard ◽  
Ehsan Adib

Sign in / Sign up

Export Citation Format

Share Document