Analyzing gas turbine-generator performance of the hybrid power system

Author(s):  
Rupen Panday ◽  
Farida Harun ◽  
Biao Zhang ◽  
Daniel Maloney ◽  
David Tucker ◽  
...  
2010 ◽  
Vol 34 (8) ◽  
pp. 1040-1049
Author(s):  
Sae-Gin Oh ◽  
Tae-Woo Lim ◽  
Jong-Su Kim ◽  
Byung-Lea Kil ◽  
Sang-Kyun Park ◽  
...  

Author(s):  
Junrong Xia ◽  
Pan Zhao ◽  
Yiping Dai

Due to the intermittence and fluctuation of wind resource, the integration of large wind farms in a power grid introduces an additional stochastic component to power system scheduling. This always brings challenges to maintain the stability of power system. Integrating gas turbine units with wind farms can compensate their output fluctuation. In this paper, a methodology for the operation scheduling of a hybrid power system that consists of a large wind farm and gas turbine units is presented. A statistical model based on numerical weather prediction is used to forecast power output of the wind farm for the next 24 hours at quarter-hour intervals. Forecasts of wind power are used for optimizing the operation scheduling. In order to study the dynamic performance of the proposed hybrid power system, dynamic modeling of this hybrid power system is addressed. Wind farm and gas turbine units are integrated through an AC bus, and then connected to a power grid. An aggregated model of the wind farm and detailed models of gas turbine units are developed, and are implemented using MATLAB/Simulink. Simulation studies are carried out to evaluate the system performance using real weather data. The simulation results show that the proposed hybrid power system can compensate fluctuating wind power effectively and make wind power more reliable.


2013 ◽  
Vol 38 (11) ◽  
pp. 4748-4759 ◽  
Author(s):  
Dang Saebea ◽  
Yaneeporn Patcharavorachot ◽  
Suttichai Assabumrungrat ◽  
Amornchai Arpornwichanop

Volume 3 ◽  
2004 ◽  
Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Jae Hwan Kim ◽  
Tong Seop Kim ◽  
Sung Tack Ro ◽  
...  

Performance of a solid oxide fuel cell (SOFC) can be enhanced by converting thermal energy of its high temperature exhaust gas to mechanical power using a micro gas turbine (MGT). A MGT plays also an important role to pressurize and warm up inlet gas streams of the SOFC. Performance behavior of the SOFC is sensitively influenced by internal constructions of the SOFC and related to design and operating parameters. In case of the SOFC/MGT hybrid power system, internal constructions of the SOFC influence not only on the performance of the SOFC but also on the whole hybrid system. In this study, influence of performance characteristics of the tubular SOFC and its internal reformer on the hybrid power system is discussed. For this purpose, detailed heat and mass transfer with reforming and electrochemical reactions in the SOFC are mathematically modeled and their results are reflected to the performance analysis. Effects of different internal constructions of the SOFC system and design parameters such as current density, recirculation ratio, fuel utilization factor, and catalyst density in internal reformer on the system performance are investigated and, as a result, some guidelines for the choice of those parameters for optimum operations of the SOFC/MGT hybrid power system are discussed.


2012 ◽  
Author(s):  
Rajnish K. Calay ◽  
Mohamad Y. Mustafa ◽  
Mohammad S. Virk ◽  
Mahmoud F. Mustafa

Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Jae Hwan Kim ◽  
Tong Seop Kim ◽  
Sung Tack Ro ◽  
...  

Solid oxide fuel cell / micro gas turbine (SOFC/MGT) hybrid power system has been theoretically demonstrated that it can achieve higher thermal efficiency than any other power generation systems. To understand performance characteristics of the SOFC/MGT hybrid power system, it is necessary to analyze sensitivities of operating and design parameters on its performance. In this study, a quasi-2D model for the mathematical modeling of a tubular type indirect internal reforming solid oxide fuel cell (IIR-SOFC) is proposed and applied to a performance analysis of a SOFC/MGT hybrid power system. Using this model, temperature distributions along the longitudinal direction of the IIR-SOFC, which cannot be predicted by the lumped model, are calculated. In addition, sensitivities of parameters governing fuel cell performance such as current density, fuel utilization factor, steam-carbon ratio and parameters governing gas turbine performance such as pressure ratio, turbine inlet temperature, adiabatic efficiencies of compressor/turbine, and heat exchange effectiveness of the recuperator on the performance of the SOFC/MGT hybrid power system are investigated. Results in this study show how a quasi-2D model can improve accuracy of the performance analysis and its implementation to the performance analysis with discussion about sensitivities of design and operating parameters to the performance of the SOFC/MGT hybrid power system.


Sign in / Sign up

Export Citation Format

Share Document