micro gas turbine
Recently Published Documents


TOTAL DOCUMENTS

935
(FIVE YEARS 229)

H-INDEX

34
(FIVE YEARS 9)

2022 ◽  
Vol 309 ◽  
pp. 118391
Author(s):  
Miel Sharf ◽  
Iliya Romm ◽  
Michael Palman ◽  
Daniel Zelazo ◽  
Beni Cukurel

2022 ◽  
Vol 31 (1) ◽  
pp. 251-260
Author(s):  
Mengzi Zheng ◽  
Weiguang Huang ◽  
Chuang Gao ◽  
Fuxian Wu

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vedant Dwivedi ◽  
Srikanth Hari ◽  
S. M. Kumaran ◽  
B. V. S. S. S. Prasad ◽  
Vasudevan Raghavan

Abstract Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042075
Author(s):  
P G Kolpahchyan ◽  
M S Podbereznaya ◽  
M S Alexandrova ◽  
V V Baibichyan

Abstract The article discusses the possibility of using domestic materials in a high-speed electric generator. The features of Japanese electrical steel 20NTN1500 and domestic-made electrical steel grades 2420 and 2421 for the stator magnetic circuit are shown. The features of American steel AISI 455 and structural steel grades Steel 40, Steel 40H, Steel 45 are considered in the case of a rotor. A feature of the use of structural steels in the design of the high-speed electric generator rotor for micro-gas turbine plants is the need for precise observance of the rotor heat treatment mode after its manufacture, control of the dimensions and quality of surface treatment.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Agostini ◽  
C. Carbone ◽  
M. Lanchi ◽  
A. Miliozzi ◽  
M. Misceo ◽  
...  

Concentrated solar power (CSP) systems are regarded as a renewable energy source technology that can contribute to decoupling the energy mix from fossil fuel combustion and related environmental impacts. However, current small-scale CSP technologies (e.g., Dish-Stirling) have not entered the market yet due to high costs, complexity, and poor reliability. The EU-funded OMSoP (Optimised Microturbine Solar Power) project aimed at solving the small-scale CSP shortcomings by coupling a solar dish with the consolidated and relatively cheap technology of the micro gas turbine (MGT). In this study, an environmental life cycle assessment analysis of the production and operation of a CSP-MGT system is performed following an eco-design approach, thus identifying the environmental hotspots and how the system can be improved in terms of environmental impacts. The results of the analysis, per unit of electricity produced, were compared to other renewable technologies with the same level of dispatchability to better evaluate strengths and weaknesses of the system under exam. With regard to climate change, the greenhouse gas (GHG) emissions of the CSP-MGT system resulted in the same range as those generated by photovoltaic systems. However, the system can substantially be optimized and the GHG emissions per kWh can be reduced up to 73% with respect to the built prototype. The GHG emissions are much lower than the current Italian energy mix (by up to 94%). To reduce the environmental burden of CSP-MGT plants, the system design here considered should be revised by improving the component’s performance and significantly reducing the reflective surface and therefore the structural materials for the dish foundation and frame. The replacement of steel in the dish frame with aluminum increases all the environmental impact parameters and primary energy demand (17%–27% depending on the environmental category considered) but slightly reduces abiotic element depletion (by 9%).


Sign in / Sign up

Export Citation Format

Share Document