scholarly journals Cramr-Rao Bound Optimization for Joint Radar-Communication Beamforming

Author(s):  
Fan Liu ◽  
Ya-Feng Liu ◽  
Ang Li ◽  
Christos Masouros ◽  
Yonina C. Eldar
Keyword(s):  
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1507
Author(s):  
Gaoming Du ◽  
Chao Tian ◽  
Zhenmin Li ◽  
Duoli Zhang ◽  
Chuan Zhang ◽  
...  

The delay bound in system on chips (SoC) represents the worst-case traverse time of on-chip communication. In network on chip (NoC)-based SoC, optimizing the delay bound is challenging due to two aspects: (1) the delay bound is hard to obtain by traditional methods such as simulation; (2) the delay bound changes with the different application mappings. In this paper, we propose a delay bound optimization method using discrete firefly optimization algorithms (DBFA). First, we present a formal analytical delay bound model based on network calculus for both unipath and multipath routing in NoCs. We then set every flow in the application as the target flow and calculate the delay bound using the proposed model. Finally, we adopt firefly algorithm (FA) as the optimization method for minimizing the delay bound. We used industry patterns (video object plane decoder (VOPD), multiwindow display (MWD), etc.) to verify the effectiveness of delay bound optimization method. Experiments show that the proposed method is both effective and reliable, with a maximum optimization of 42.86%.


ETRI Journal ◽  
2020 ◽  
Vol 42 (5) ◽  
pp. 700-711
Author(s):  
Seungwoo Seo ◽  
Da‐Eun Ko ◽  
Jong‐Moon Chung

Author(s):  
Thukaram Dhadbanjan ◽  
H. P. Khincha ◽  
M. S.S. Phaniram

This paper proposes a new approach for solving the state estimation problem. The approach is aimed at producing a robust estimator that rejects bad data, even if they are associated with leverage-point measurements. This is achieved by solving a sequence of Linear Programming (LP) problems. Optimization is carried via a new algorithm which is a combination of ``upper bound optimization technique" and ``an improved algorithm for discrete linear approximation". In this formulation of the LP problem, in addition to the constraints corresponding to the measurement set, constraints corresponding to bounds of state variables are also involved, which enables the LP problem more efficient in rejecting bad data, even if they are associated with leverage-point measurements. Results of the proposed estimator on IEEE 39-bus system and a 24-bus EHV equivalent system of the southern Indian grid are presented for illustrative purpose.


Author(s):  
Thukaram Dhadbanjan ◽  
Seshadri Sravan Kumar Vanjari

State estimation plays an important role in real time security monitoring and control of power systems. There are many problems in the implementation of state estimator for large scale networks due to measurement errors, weights given and the numerical ill-conditioning associated with the solution techniques. In this paper a new formulation using linear programming approach is presented. The formulation is devoid of weights and errors associated with the measurements are taken care of in constraints. The non linear problem is linearized at previous operating state and constraints are set up using flow mismatches. The implementation of the formulation exploits sparse features of the network matrices and avoids matrix inversions. Upper bound optimization technique is employed to solve the linear programming problem. Illustration of the proposed approach on sample 3-bus and 6-bus systems and a practical Indian Southern grid 72 bus equivalent system are presented.


Sign in / Sign up

Export Citation Format

Share Document