Towards Three-Dimensional Millimeter-Wave Radar With the Bistatic Fast-Factorized Back-Projection Algorithm—Potential and Limitations

2012 ◽  
Vol 2 (4) ◽  
pp. 432-440 ◽  
Author(s):  
Jochen Moll ◽  
Philipp Schops ◽  
Viktor Krozer
2005 ◽  
Vol 44 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Eiko Wada ◽  
Hiroyuki Hashiguchi ◽  
Masayuki K. Yamamoto ◽  
Michihiro Teshiba ◽  
Shoichiro Fukao

Abstract Observations of frontal cirrus clouds were conducted with the scanning millimeter-wave radar at the Shigaraki Middle and Upper Atmosphere (MU) Radar Observatory in Shiga, Japan, during 30 September–13 October 2000. The three-dimensional background winds were also observed with the very high frequency (VHF) band MU radar. Comparing the observational results of the two radars, it was found that the cirrus clouds appeared coincident with the layers of the strong vertical shear of the horizontal winds, and they developed and became thicker under the condition of the strong vertical shear of the horizontal wind and updraft. The result of the radiosonde observation indicated that Kelvin–Helmholtz instability (KHI) occurred at 8–9-km altitudes because of the strong vertical shear of the horizontal wind. The warm and moist air existed above the 8.5-km altitude, and the cold and dry air existed below the 8.5-km altitude. As a result of the airmass mixing of air above and below the 8.5-km altitudes, the cirrus clouds were formed. The updraft, which existed at 8.5–12-km altitude, caused the development of the cirrus clouds with the thickness of >2 km. By using the scanning millimeter-wave radar, the three-dimensional structure of cell echoes formed by KHI for the first time were successfully observed.


2000 ◽  
Vol 54 (10) ◽  
pp. 101-111
Author(s):  
Aleksey Alekseevich Tolkachev ◽  
Vasiliy Andreevich Makota ◽  
Mariya Petrovna Pavlova ◽  
Anatoliy Moiseevich Nikolaev ◽  
Vladimir Victorovich Denisenko ◽  
...  

2006 ◽  
Vol 65 (16) ◽  
pp. 1453-1462
Author(s):  
A. N. Nechiporenko ◽  
L. D. Fesenko

Sign in / Sign up

Export Citation Format

Share Document