horizontal wind
Recently Published Documents


TOTAL DOCUMENTS

884
(FIVE YEARS 287)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 237 ◽  
pp. 111820
Author(s):  
Siyao Jia ◽  
Longhua Hu ◽  
Yuxuan Ma ◽  
Xiaolei Zhang ◽  
Osamu Fujita

2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Jiaxin Liu ◽  
Xiaoquan Song ◽  
Wenrui Long ◽  
Yiyuan Fu ◽  
Long Yun ◽  
...  

The Doppler lidar system can accurately obtain wind profiles with high spatiotemporal resolution, which plays an increasingly important role in the research of atmospheric boundary layers and sea–land breeze. In September 2019, Doppler lidars were used to carry out observation experiments of the atmospheric wind field and pollutants in Shenzhen. Weather Research and Forecasting showed that the topography of Hongkong affected the sea breeze to produce the circumfluence flow at low altitudes. Two sea breezes from the Pearl River Estuary and the northeast of Hong Kong arrived at the observation site in succession, changing the wind direction from northeast to southeast. Based on the wind profiles, the structural and turbulent characteristics of the sea breeze were analyzed. The sea breeze front was accurately captured by the algorithm based on fuzzy logic, and its arrival time was 17:30 on 25 September. The boundary between the sea breeze and the return flow was separated by the edge enhancement algorithm. From this, the height of the sea breeze head (about 1100 m) and the thickness of the sea breeze layer (about 700 m) can be obtained. The fluctuated height of the boundary and the spiral airflow nearby revealed the Kelvin–Helmholtz instability. The influence of the Kelvin–Helmholtz instability could be delivered to the near-surface, which was verified by the spatiotemporal change of the horizontal wind speed and momentum flux. The intensity of the turbulence under the control of the sea breeze was significantly lower than that under the land breeze. The turbulent intensity was almost 0.1, and the dissipation rate was between 10−4 and 10−2 m2·s−3 under the land breeze. The turbulent intensity was below 0.05, and the dissipation rate was between 10−5 and 10−3 m2·s−3 under the sea breeze. The turbulent parameters showed peaks and large gradients at the boundary and the sea breeze front. The peak value of the turbulent intensity was around 0.3, and the dissipation rate was around 0.1 m2·s−3. The round-trip effect of sea–land breeze caused circulate pollutants. The recirculation factor was maintained at 0.5–0.6 at heights where the sea and land breeze alternately controlled (below 600 m), as well as increasing with a decreasing duration of the sea breeze. The factor exceeded 0.9 under the control of the high-altitude breeze (above 750 m). The convergence and rise of the airflow at the front led to collect pollutants, causing a sharp decrease in air quality when the sea breeze front passed.


2022 ◽  
Author(s):  
Ze Chen ◽  
Yufang Tian ◽  
Yinan Wang ◽  
Yongheng Bi ◽  
Xue Wu ◽  
...  

Abstract. Based on the quality-controlled observational spectral width data of the Beijing Mesosphere–Stratosphere–Troposphere (MST) radar in the altitudinal range of 3–19.8 km from 2012 to 2014, this paper analyzes the relationship between the proportion of negative turbulent kinetic energy (N-TKE) and the horizontal wind speed/horizontal wind vertical shear domain, and gives the distributional characteristics of atmospheric turbulence parameters obtained by using different calculation models. Three calculation models of the spectral width method were used in this study—namely, the H model (Hocking, 1985), N-2D model (Nastrom, 1997) and D-H model (Dehghan and Hocking, 2011). The results showed that the proportion of N-TKE in the H model increases with the horizontal wind speed and/or the vertical shear of horizontal wind speed, up to 80 %. When the horizontal wind speed is greater than 40 m·s−1, the proportion of N-TKE in the H model is greater than 60 %, and thus the H model is not applicable. When the horizontal wind speed is greater than 20 m s−1, the proportion of N-TKE in the N-2D model and D-H model increases with the horizontal wind speed, independent of the vertical shear of the horizontal wind speed, and the maximum values are 2 % and 4 %, respectively. However, it is still necessary to consider the applicability of the N-2D model and D-H model in some weather processes with strong winds. The distributional characteristics with height of the turbulent kinetic energy dissipation rate 𝜀 and the vertical eddy diffusion coefficient Kz derived by the three models are consistent with previous studies. Still, there are differences in the values of turbulence parameters. Also, the range resolution of the radar has little effect on the differences in the range of turbulence parameters' values. The median values of 𝜀 in the H model, N-2D model and D-H model are 10−3.2–10−2.8 m2 s−3, 10−2.8–10−2.4 m2 s−3 and 10−3.0–10−2.5 m2 s−3, respectively. The median values of Kz in these three models are 100.18–100.67 m2 s−1, 100.57–100.90 m2 s−1 and 100.44–100.74 m2 s−1.


Abstract Forecast observing system simulation experiments (OSSEs) are conducted to assess the potential impact of geostationary microwave (GeoMW) sounder observations on numerical weather prediction forecasts. A regional OSSE is conducted using a tropical cyclone (TC) case that is very similar to hurricane Harvey (2017), as hurricanes are among the most devastating of weather-related natural disasters, and hurricane intensity continues to pose a significant challenge for numerical weather prediction. A global OSSE is conducted to assess the potential impact of a single GeoMW sounder centered over the continental United States versus two sounders positioned at the current locations of the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES) East and West. It is found that assimilation of GeoMW soundings result in better characterization of the TC environment, especially before and during intensification, which leads to significant improvements in forecasts of TC track and intensity. TC vertical structure (warm core thermal perturbation and horizontal wind distribution) is also substantially improved, as are the surface wind and precipitation extremes. In the global OSSE, assimilation of GeoMW soundings leads to slight improvement globally and significant improvement regionally, with regional impact equal to or greater than nearly all other observation types.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Satoshi Ishii ◽  
Yoshihiro Tomikawa ◽  
Masahiro Okuda ◽  
Hidehiko Suzuki

AbstractImaging observations of OH airglow were performed at Meiji University, Japan (35.6° N, 139.5° E), from May 2018 to December 2019. Mountainous areas are located to the west of the imager, and westerly winds are dominant in the lower atmosphere throughout the year. Mountain waves (MWs) are generated and occasionally propagate to the upper atmosphere. However, only four likely MW events were identified, which are considerably fewer than expected. There are two possible reasons for the low incidence: (1) MWs do not propagate easily to the upper mesosphere due to background wind conditions, and/or (2) the frequency of MW excitation was low around the observation site. Former possibility is found not to be a main reason to explain the frequency by assuming typical wind profiles in troposphere and upper mesosphere over Japan. Thus, frequency and spatial distribution of orographic wavy clouds were investigated by analyzing images taken by the Himawari-8 geostationary meteorological satellite in 2018. The number of days when wavy clouds were detected in the troposphere around the observation site (Kanto area) was about a quarter of that around the Tohoku area. This result indicates that frequency of over-mountain flow which is thought to be a source of excitation of MWs is low in Kanto area. We also found that the angle between the horizontal wind direction in troposphere and the orientation of the mountain ridge is a good proxy for the occurrence of orographic wavy clouds, i.e., excitation of MWs. We applied this proxy to the topography around the world to investigate regions where MWs are likely to be excited frequently throughout the year to discuss the likelihood of "MW hotspots" at various spatial scale. Graphical Abstract


2021 ◽  
Vol 14 (2) ◽  
pp. 118-124
Author(s):  
Shinta Dwi Oktaviani ◽  
Reza Setiawan ◽  
Farradina Choria Suci

Energy needs in Indonesia continue to increase, while the availability of non-renewable energy sources is decreasing and is exacerbated by the increasing use of fuels that are not environmentally friendly, so efforts are needed to find alternative uses of renewable energy that are renewable and environmentally friendly. The Cirebon coast has good wind conditions which can be used to create renewable energy sources through the wind. This study aims to utilize the energy that is already available by designing a horizontal wind turbine blade. The method used starts from literature study, selecting airfoils, analyzing data, selecting the best airfoils, analyzing the best airfoils and ending with design drawings. The initial data used as the initial design is the Cirebon City wind data which has the highest average wind speed of 9 m/s. This study designed a horizontal wind turbine blade using QBlade Software with 3 types of NACA, NACA 4415, 6412 and 6415. NACA 6415 has a power coefficient of 0.40%, the highest coefficient is then obtained NACA 6412 with a coefficient of 0.41%, and The highest power coefficient was obtained by NACA 4415 with a coefficient of 44%


2021 ◽  
Author(s):  
Nedjeljka Žagar ◽  
Žiga Zaplotnik ◽  
Valentino Neduhal

<p>The energy spectrum of atmospheric horizontal motions has been extensively studied in observations and numerical simulations. Its canonical shape includes a transition from the -3 power law at synoptic scale to -5/3 power law at mesoscale. The transition is taking place at scales around 500 km that can be seen as the scale where energy associated with quasi-linear inertia-gravity waves exceeds the balanced (or Rossby wave) energy. In contrast to the horizontal spectrum, the spectrum of kinetic energy of vertical motions is poorly known since the vertical motion is not an observed quantity of the global observing system and vertical kinetic energy spectra from non-hydrostatic models are difficult to validate.</p> <p>Traditionally, vertical velocities associated with the Rossby and gravity waves have been treated separately using the quasi-geostrophic omega equations and polarization relations for the stratified Boussinesq fluid in the (x,z) plane, respectively. In the tropics, the Rossby and gravity  wave regimes are difficult to separate and their frequency gap, present in the extra-tropics, is filled with the Kelvin and mixed Rossby-gravity waves. A separate treatment of the Rossby and gravity wave regimes makes it challenging to quantify energies of their vertical motions and vertical momentum fluxes. A unified treatment and wave interactions is performed by high-resolution non-hydrostatic models but their understanding requires the toolkit of theory. </p> <p>This contribution presents a unified framework for the derivation of vertical velocities of the Rossby and inertia-gravity waves and associated kinetic energy spectra. Expressions for the Rossby and gravity wave vertical velocities are derived using the normal-mode framework in the hydrostatic atmosphere that can be considered applicable up to the scale around 10 km. The derivation involves the analytical evaluation of divergence of the horizontal wind associated with the Rossby and inertia-gravity eigensolutions of the linearized primitive equations. The new framework is applied to the global analysis data of the ECMWF system. Results confirm that the tropical vertical kinetic energy spectra associated with inertia-gravity waves are on average indeed white. Deviations from the white spectrum are discussed for latitude and altitude bands.</p>


2021 ◽  
Author(s):  
Charlotte Rahlves ◽  
Frank Beyrich ◽  
Siegfried Raasch

Abstract. Lidar scan techniques for wind profiling rely on the assumption of a horizontally homogeneous wind field and stationarity for the duration of the scan. As this condition is mostly violated in reality, detailed knowledge of the resulting measurement error is required. The objective of this study is to quantify and compare the expected error associated with Doppler-lidar wind profiling for different scan strategies and meteorological conditions by performing virtual measurements implemented in a large-eddy simulation (LES) model. Various factors influencing the lidar retrieval error are analyzed through comparison of the wind measured by the virtual lidar with the ‘true’ value generated by the LES. These factors include averaging interval length, zenith angle configuration, scan technique and instrument orientation. For the first time, ensemble simulations are used to determine the statistically expected uncertainty of the lidar error. The analysis reveals a root-mean-square deviation (RMSD) of less than 1 m s−1 for 10 min averages of wind speed measurements in a moderately convective boundary layer, while RMSD exceeds 2 m s−1 in strongly convective conditions. Unlike instrument orientation and scanning scheme, the zenith angle configuration proved to have significant effect on the retrieval error. Horizontal wind speed error is reduced when a larger zenith angle configuration is used, but is increased for measurements of vertical wind. Results suggest that the scan strategy has a relevant effect on the lidar retrieval error and that instrument configuration should be chosen depending on the quantity of interest and the flow conditions in which the measurement is performed.


2021 ◽  
Author(s):  
Poornima Menon ◽  
Srinivas G

Abstract Wind turbines are one of the most prominent and popular sources of renewable energy, of which, horizontal axis wind turbines (HAWT) are the majorly chosen design for wind machines. These turbines rotate about the horizontal axis which is parallel to the ground. They comprise of aerodynamic blades (generated from the desired airfoil), that may be twisted or tapered as per the design requirements. The blades are attached to a rotor which is located either upwind or downwind. To help wind the orientation of the turbines, the upwind rotors have a tail vane, while the downwind rotors are coned which in turn help them to self-orient. One of the major reasons for the popularity of the horizontal wind turbine, is its ability to generate a larger amount of electricity for a given amount of wind. Due to its popularity, the enhancement in the design of HAWTs, is a major focus area for research. In the present study, a scaled-down CFD model of the NREL Phase VI was validated against the numerical and experimental data. The model used had a dual blade rotor and applied the S809 airfoil. The simulations were carried out using a rotating mesh in ANSYS Fluent. Validation was carried out for 3 velocities — 7m/s, 10m/s and 20m/s. Once validation was carried out, turbine was modified with the addition of vortex generators, in the form of cylindrical protrusions that reduce flow separation.


Author(s):  
Antonio Sérgio C. Freire ◽  
Maria Isabel Vitorino ◽  
Adriano Marlisson L. de Souza ◽  
Michell Fontenelle Germano

AbstractAn unprecedented study was carried out in a mangrove ecosystem in the northeastern coast of the Brazilian Amazon to understand the behavior of climatic elements in a year with the occurrence of El Niño (2015), associated with the seasonal function source/sink of CO2 by the ecosystem. Global radiation (Rg), net radiation (Rn), temperature, relative humidity, precipitation, horizontal wind speed and direction, as well as turbulent flows of sensible heat (H), latent heat (LE), and carbon (f_CO2) were recorded using eddy covariance, a system for studying turbulent flows of heat and gases in the atmosphere. We observed a drastic reduction in rainfall volumes, which accounts for 63.7% of the expected total according to the region’s climatology. Regarding f_ CO2, the highest values of photosynthesis, autotrophic, and heterotrophic respiration of the ecosystem occurred in the wet season due to precipitation, ideal photosynthetically active radiation, lower soil salinity, and higher NDVI of the ecosystem. In the 2nd semester of the year, we observed that the decrease in cloudiness, causing a higher radiation supply in the forest canopy, accompanied by a reduction in precipitation and an increase in the value of H and soil salinity, favored the increase of foliar abscission by the dominant genus Rhizophora and Avicennia, thus influencing the reduction of magnitudes of carbon source/sink functions in the ecosystem during this season, even on high tide days.


Sign in / Sign up

Export Citation Format

Share Document