doppler velocity
Recently Published Documents


TOTAL DOCUMENTS

1097
(FIVE YEARS 229)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 33-55
Author(s):  
Claudia Acquistapace ◽  
Richard Coulter ◽  
Susanne Crewell ◽  
Albert Garcia-Benadi ◽  
Rosa Gierens ◽  
...  

Abstract. As part of the EUREC4A field campaign, the research vessel Maria S. Merian probed an oceanic region between 6 to 13.8∘ N and 51 to 60∘ W for approximately 32 d. Trade wind cumulus clouds were sampled in the trade wind alley region east of Barbados as well as in the transition region between the trades and the intertropical convergence zone, where the ship crossed some mesoscale oceanic eddies. We collected continuous observations of cloud and precipitation profiles at unprecedented vertical resolution (7–10 m in the first 3000 m) and high temporal resolution (1–3 s) using a W-band radar and micro rain radar (MRR), installed on an active stabilization platform to reduce the impact of ship motions on the observations. The paper describes the ship motion correction algorithm applied to the Doppler observations to extract corrected hydrometeor vertical velocities and the algorithm created to filter interference patterns in the MRR observations. Radar reflectivity, mean Doppler velocity, spectral width and skewness for W-band and reflectivity, mean Doppler velocity, and rain rate for MRR are shown for a case study to demonstrate the potential of the high resolution adopted. As non-standard analysis, we also retrieved and provided liquid water path (LWP) from the 89 GHz passive channel available on the W-band radar system. All datasets and hourly and daily quicklooks are publically available, and DOIs can be found in the data availability section of this publication. Data can be accessed and basic variables can be plotted online via the intake catalog of the online book “How to EUREC4A”.


Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 30
Author(s):  
Huidan Yu ◽  
Monsurul Khan ◽  
Hao Wu ◽  
Chunze Zhang ◽  
Xiaoping Du ◽  
...  

Inlet and outlet boundary conditions (BCs) play an important role in newly emerged image-based computational hemodynamics for blood flows in human arteries anatomically extracted from medical images. We developed physiological inlet and outlet BCs based on patients’ medical data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler velocity waveform. The BC of each outlet is a pulsatile pressure calculated from the three-element Windkessel model, in which three physiological parameters are tuned by the corresponding Doppler velocity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equations through Guo’s non-equilibrium extrapolation scheme. Meanwhile, we performed uncertainty quantification for the impact of uncertainties on the computation results. An application study was conducted for six human aortorenal arterial systems. The computed pressure waveforms have good agreement with the medical measurement data. A systematic uncertainty quantification analysis demonstrates the reliability of the computed pressure with associated uncertainties in the Windkessel model. With the developed physiological BCs, the image-based computation hemodynamics is expected to provide a computation potential for the noninvasive evaluation of hemodynamic abnormalities in diseased human vessels.


Abstract Using NOAA’s S-band High Power Snow-Level Radar, HPSLR, a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized Gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion, w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter, Dm, from the measured reflectivity, Z, produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, NC. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.


2021 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Li-Ping Tian ◽  
Liang-Qin Chen ◽  
Zhi-Meng Xu ◽  
Zhizhang (David) Chen

With the development of wireless communication technology, indoor tracking technology has been rapidly developed. Wits presents a new indoor positioning and tracking algorithm with channel state information of Wi-Fi signals. Wits tracks using motion speed. Firstly, it eliminates static path interference and calibrates the phase information. Then, the maximum likelihood of the phase is used to estimate the radial Doppler velocity of the target. Experiments were conducted, and two sets of receiving antennas were used to determine the velocity of a human. Finally, speed and time intervals were used to track the target. Experimental results show that Wits can achieve the mean error of 0.235 m in two different environments with a known starting point. If the starting point is unknown, the mean error is 0.410 m. Wits has good accuracy and efficiency for practical applications.


Abstract The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) data set blends radar data from the WSR-88D network and Near-Storm Environmental (NSE) model analyses using the Multi-Radar Multi-Sensor (MRMS) framework. The MYRORSS data set uses the WSR-88D archive starting in 1998 through 2011, processing all valid single-radar volumes to produce a seamless three-dimensional reflectivity volume over the entire contiguous United States with an approximate 5-min update frequency. The three-dimensional grid has an approximate 1-km by 1-km horizontal dimension and is on a stretched vertical grid that extends to 20 km MSL with a maximal vertical spacing of 1 km. Several reflectivity-derived, severe storm related products are also produced, which leverage the ability to merge the MRMS and NSE data. Two Doppler velocity-derived azimuthal shear layer maximum products are produced at a higher horizontal resolution of approximately 0.5-km by 0.5-km. The initial period of record for the data set is 1998-2011. The data set underwent intensive manual quality control to ensure that all available and valid data were included while excluding highly problematic radar volumes that were a negligible percentage of the overall data set, but which caused large data errors in some cases. This data set has applications towards radar-based climatologies, post-event analysis, machine learning applications, model verification, and warning improvements. Details of the manual quality control process are included and examples of some of these applications are presented.


2021 ◽  
Vol 9 (12) ◽  
pp. 1432
Author(s):  
Zhizun Xu ◽  
Maryam Haroutunian ◽  
Alan J. Murphy ◽  
Jeff Neasham ◽  
Rose Norman

Underwater navigation presents crucial issues because of the rapid attenuation of electronic magnetic waves. The conventional underwater navigation methods are achieved by acoustic equipment, such as the ultra-short-baseline localisation systems and Doppler velocity logs, etc. However, they suffer from low fresh rate, low bandwidth, environmental disturbance and high cost. In the paper, a novel underwater visual navigation is investigated based on the multiple ArUco markers. Unlike other underwater navigation approaches based on the artificial markers, the noise model of the pose estimation of a single marker and an optimal algorithm of the multiple markers are developed to increase the precision of the method. The experimental tests are conducted in the towing tank. The results show that the proposed method is able to localise the underwater vehicle accurately.


2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Roberto Menè ◽  
Michele Tomaselli ◽  
Mara Gavazzoni ◽  
Francesco Maisano ◽  
Gianfranco Parati ◽  
...  

Abstract A 32-year-old female was referred to our outpatient clinic for exertional dyspnoea that had worsened in the preceding months. She had a history of mitral and aortic valve replacement with bileaflet mechanical prosthesis (St. Jude Master n. 25 and Medtronic Open Pivot n. 16, respectively) for rheumatic heart disease. A recent echocardiography showed borderline-high trans-aortic gradients (mean 26 mmHg, peak 42 mmHg). Transthoracic echocardiography revealed abnormal aortic transprosthetic flow (peak velocity 442 cm/s, mean gradient 48 mmHg). Continuous Wave Doppler signal was rounded with a long acceleration time (108 ms). Effective orifice area (EOA) was 0.8 cmq (index EOA 0.48 cmq/mq) and Doppler Velocity Index 0.28. Further investigations revealed no signs of infections but suboptimal anticoagulation (INR 2.5). Transesophageal 3D echocardiography was suggestive for hypomobility of the prosthetic leaflets and the presence of an isoechoic mass encircling the ventricular side of the aortic prosthesis compatible with pannus overgrowth. Cardiac CT confirmed the presence of a symmetrical reduction in the systolic opening of both leaflets. The patient underwent a redo of aortic valve replacement that confirmed the presence of an asymmetric subprosthetic pannus overgrowing on the previously implanted surgical pledgets. After pannus debritment a St. Jude Regent n. 21 was implanted. The patient experienced complete symptomatic resolution. We presented the case of a prosthetic aortic valve dysfunction due to a combination of patient-prosthesis mismatch and pannus overgrowth. In our patient, as assessed in the old echocardiographic examinations, the presence of mildly elevated transprosthetic gradients was suggestive for prosthesis undersizing related to body surface area. In this scenario, subvalvular pannus formation caused significant changes in prosthetic valve transvalvular flow dynamic leading to prosthesis dysfunction. This case emphasises the crucial role of echocardiographic follow up in detection of causes of prosthetic heart valve dysfunction and how optimal valve sizing is paramount in aortic valve replacement.


Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Conrad Schwanitz ◽  
Louise Harra ◽  
Nour E. Raouafi ◽  
Alphonse C. Sterling ◽  
Alejandro Moreno Vacas ◽  
...  

AbstractRecent observations from Parker Solar Probe have revealed that the solar wind has a highly variable structure. How this complex behaviour is formed in the solar corona is not yet known, since it requires omnipresent fluctuations, which constantly emit material to feed the wind. In this article we analyse 14 upflow regions in the solar corona to find potential sources for plasma flow. The upflow regions are derived from spectroscopic data from the EUV Imaging Spectrometer (EIS) on board Hinode determining their Doppler velocity and defining regions which have blueshifts stronger than $-6~\mbox{km}\,\mbox{s}^{-1}$ − 6 km s − 1 . To identify the sources of these blueshift data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), on board the Solar Dynamics Observatory (SDO), and the X-ray Telescope (XRT), on board Hinode, are used. The analysis reveals that only 5 out of 14 upflows are associated with frequent transients, like obvious jets or bright points. In contrast to that, seven events are associated with small-scale features, which show a large variety of dynamics. Some resemble small bright points, while others show an eruptive nature, all of which are faint and only live for a few minutes; we cannot rule out that several of these sources may be fainter and, hence, less obvious jets. Since the complex structure of the solar wind is known, this suggests that new sources have to be considered or better methods used to analyse the known sources. This work shows that small and frequent features, which were previously neglected, can cause strong upflows in the solar corona. These results emphasise the importance of the first observations from the Extreme-Ultraviolet Imager (EUI) on board Solar Orbiter, which revealed complex small-scale coronal structures.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7910
Author(s):  
Sindre Fossen ◽  
Thor I. Fossen

Small USVs are usually equipped with a low-cost navigation sensor suite consisting of a global navigation satellite system (GNSS) receiver and a magnetic compass. Unfortunately, the magnetic compass is highly susceptible to electromagnetic disturbances. Hence, it should not be used in safety-critical autopilot systems. A gyrocompass, however, is highly reliable, but it is too expensive for most USV systems. It is tempting to compute the heading angle by using two GNSS antennas on the same receiver. Unfortunately, for small USV systems, the distance between the antennas is very small, requiring that an RTK GNSS receiver is used. The drawback of the RTK solution is that it suffers from dropouts due to ionospheric disturbances, multipath, interference, etc. For safety-critical applications, a more robust approach is to estimate the course angle to avoid using the heading angle during path following. The main result of this article is a five-state extended Kalman filter (EKF) aided by GNSS latitude-longitude measurements for estimation of the course over ground (COG), speed over ground (SOG), and course rate. These are the primary signals needed to implement a course autopilot system onboard a USV. The proposed algorithm is computationally efficient and easy to implement since only four EKF covariance parameters must be specified. The parameters need to be calibrated for different GNSS receivers and vehicle types, but they are not sensitive to the working conditions. Another advantage of the EKF is that the autopilot does not need to use the COG and SOG measurements from the GNSS receiver, which have varying quality and reliability. It is also straightforward to add complementary sensors such as a Doppler Velocity Log (DVL) to the EKF to improve the performance further. Finally, the performance of the five-state EKF is demonstrated by experimental testing of two commercial USV systems.


Author(s):  
Mustafa Dinç ◽  
Chingiz Hajiyev

This paper mainly presents the parameter identification method developed from a Least Square Estimation (LSE) algorithm to estimate hydrodynamic coefficients of Autonomous Underwater Vehicle (AUV) in the presence of measurement biases. LSE based parameter determination method is developed to obtain unbiased estimated values of hydrodynamic coefficients of AUV from biased Inertial Navigation System (INS) measurements. The proposed parameter identification method consists of two phases: in the first phase, high precision INS and its auxiliary instrument including compass, pressure depth sensor, and Doppler Velocity Log (DVL) are designed as Integrated Navigational System coupled with Complementary Kalman Filter (CKF) to determine hydrodynamic coefficients of AUV by removing the INS measurement biases; in the second phase, LSE based parameter identification method is applied to the model in the first phase for obtaining unbiased estimated values of hydrodynamic coefficients of AUV. In this paper, a method for identifying the yaw and sway motion dynamic parameters of an AUV is given. Various maneuvering scenarios are verified to assess the parameter identification method employed. The simulation results indicate that using the CKF based Integrated Navigation System together with unbiased measurement conversion could produce better results for estimating the hydrodynamic coefficients of AUV.


Sign in / Sign up

Export Citation Format

Share Document