Advanced Radiometric Analysis of Radar Image Quality

Author(s):  
Alexey Gorobets ◽  
Larisa Atroshenko ◽  
Nikolay Gorobets ◽  
Dmitriy Kochkar ◽  
Oleksandr Kostrikov
Author(s):  
Stanislaw Rzewuski ◽  
Krzysztof Kulpa ◽  
Piotr Samczynski

Author(s):  
A. A. Monakov

Introduction. Random deviations of the antenna phase centre of a synthetic aperture radar (SAR) are a source of phase errors for the received signal. These phase errors frequently cause blurring of the radar image. The image quality can be improved using various autofocus algorithms. Such algorithms estimate phase errors via optimization of an objective function, which defines the radar image quality. The image entropy and sharpness are well known examples of objective functions. The objective function extremum can be found by fast optimization methods, whose realization is a challenging computing task.Aim. To synthesize a versatile and computationally simple autofocusing algorithm allowing any objective function to used without changing its structure significantly.Materials and methods. An algorithm based on substituting the selected objective function with a simpler surrogate objective function, whose extremum can be found by a direct method, is proposed. This method has been referred as the MM optimization in scientific literature. It is proposed to use a quadratic function as a surrogate objective function.Results. The synthesized algorithm is straightforward, not requiring recursive methods for finding the optimal solution. These advantages determine the enhanced speed and stability of the proposed algorithm. Adjusting the algorithm for the selected objective function requires minimal software changes. Compared to the algorithm using a linear surrogate objective function, the proposed algorithm provides a 1.5 times decrease in the standard deviation of the phase error estimate, with an approximately 10 % decrease in the number of iterations.Conclusion. The proposed autofocusing algorithm can be used in synthetic aperture radars to compensate the arising phase errors. The algorithm is based on the MM-optimization of the quadratic surrogate objective functions for radar images. The computer simulation results confirm the efficiency of the proposed algorithm even in case of large phase errors.


Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Sign in / Sign up

Export Citation Format

Share Document