image contrast
Recently Published Documents


TOTAL DOCUMENTS

1357
(FIVE YEARS 207)

H-INDEX

60
(FIVE YEARS 6)

Author(s):  
Ahmed Elaraby ◽  
Ayman Taha

<p><span>A novel approach for multimodal liver image contrast enhancement is put forward in this paper. The proposed approach utilizes magnetic resonance imaging (MRI) scan of liver as a guide to enhance the structures of computed tomography (CT) liver. The enhancement process consists of two phases: The first phase is the transformation of MRI and CT modalities to be in the same range. Then the histogram of CT liver is adjusted to match the histogram of MRI. In the second phase, an adaptive histogram equalization technique is presented by splitting the CT histogram into two sub-histograms and replacing their cumulative distribution functions with two smooths sigmoid. The subjective and objective assessments of experimental results indicated that the proposed approach yields better results. In addition, the image contrast is effectively enhanced as well as the mean brightness and details are well preserved.</span></p>


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Sheng-Hann Wang ◽  
Chia-Wen Kuo ◽  
Shu-Cheng Lo ◽  
Wing Kiu Yeung ◽  
Ting-Wei Chang ◽  
...  

Abstract Background Gold nanoparticles (AuNPs) have been widely used in local surface plasmon resonance (LSPR) immunoassays for biomolecule sensing, which is primarily based on two conventional methods: absorption spectra analysis and colorimetry. The low figure of merit (FoM) of the LSPR and high-concentration AuNP requirement restrict their limit of detection (LOD), which is approximately ng to μg mL−1 in antibody detection if there is no other signal or analyte amplification. Improvements in sensitivity have been slow in recent for a long time, and pushing the boundary of the current LOD is a great challenge of current LSPR immunoassays in biosensing. Results In this work, we developed spectral image contrast-based flow digital nanoplasmon-metry (Flow DiNM) to push the LOD boundary. Comparing the scattering image brightness of AuNPs in two neighboring wavelength bands near the LSPR peak, the peak shift signal is strongly amplified and quickly detected. Introducing digital analysis, the Flow DiNM provides an ultrahigh signal-to-noise ratio and has a lower sample volume requirement. Compared to the conventional analog LSPR immunoassay, Flow DiNM for anti-BSA detection in pure samples has an LOD as low as 1 pg mL−1 within only a 15-min detection time and 500 μL sample volume. Antibody assays against spike proteins of SARS-CoV-2 in artificial saliva that contained various proteins were also conducted to validate the detection of Flow DiNM in complicated samples. Flow DiNM shows significant discrimination in detection with an LOD of 10 pg mL−1 and a broad dynamic detection range of five orders of magnitude. Conclusion Together with the quick readout time and simple operation, this work clearly demonstrated the high sensitivity and selectivity of the developed Flow DiNM in rapid antibody detection. Spectral image contrast and digital analysis further provide a new generation of LSPR immunoassay with AuNPs. Graphical Abstract


2022 ◽  
Vol 52 (1) ◽  
pp. 13-16
Author(s):  
O V Minin ◽  
I V Minin

Abstract It is shown that the image contrast in the air when using a microscope based on dielectric microparticles with a size of the order of wavelength can be significantly enhanced with the help microparticles that provide the formation of the radiation localisation region at an angle to the direction of radiation incidence (at an angle to the optical axis). For this purpose, a screen is placed in front of the particle, which blocks part of the incident beam, forming a photonic hook or a photonic jet (terajet) with oblique illumination in the near field.


Author(s):  
Saorabh Kumar Mondal ◽  
Arpitam Chatterjee ◽  
Bipan Tudu

Image contrast enhancement (CE) is a frequent image enhancement requirement in diverse applications. Histogram equalization (HE), in its conventional and different further improved ways, is a popular technique to enhance the image contrast. The conventional as well as many of the later versions of HE algorithms often cause loss of original image characteristics particularly brightness distribution of original image that results artificial appearance and feature loss in the enhanced image. Discrete Cosine Transform (DCT) coefficient mapping is one of the recent methods to minimize such problems while enhancing the image contrast. Tuning of DCT parameters plays a crucial role towards avoiding the saturations of pixel values. Optimization can be a possible solution to address this problem and generate contrast enhanced image preserving the desired original image characteristics. Biological behavior-inspired optimization techniques have shown remarkable betterment over conventional optimization techniques in different complex engineering problems. Gray wolf optimization (GWO) is a comparatively new algorithm in this domain that has shown promising potential. The objective function has been formulated using different parameters to retain original image characteristics. The objective evaluation against CEF, PCQI, FSIM, BRISQUE and NIQE with test images from three standard databases, namely, SIPI, TID and CSIQ shows that the presented method can result in values up to 1.4, 1.4, 0.94, 19 and 4.18, respectively, for the stated metrics which are competitive to the reported conventional and improved techniques. This paper can be considered a first-time application of GWO towards DCT-based image CE.


2021 ◽  
Author(s):  
Michael G. Ruppert ◽  
Daniel Martin-Jimenez ◽  
Yuen Kuan Yong ◽  
Alexander Ihle ◽  
Andre Schirmeisen ◽  
...  

Abstract QPlus sensors are non-contact atomic force microscope probes constructed from a quartz tuning fork and a tungsten wire with an electrochemically etched tip. These probes are self-sensing and offer an atomic-scale spatial resolution. Therefore, qPlus sensors are routinely used to visualize the chemical structure of adsorbed organic molecules via the so-called bond imaging technique. This is achieved by functionalizing the AFM tip with a single CO molecule and exciting the sensor at the first vertical cantilever resonance mode. Recent work using higher-order resonance modes has also resolved the chemical structure of single organic molecules. However, in these experiments, the image contrast can differ significantly from the conventional bond imaging contrast, which was suspected to be caused by unknown vibrations of the tip. This work investigates the source of these artefacts by using a combination of mechanical simulation and laser vibrometry to characterize a range of sensors with different tip wire geometries. The results show that increased tip mass and length cause increased torsional rotation of the tuning fork beam due to the off-center mounting of the tip wire, and increased flexural vibration of the tip. These undesirable motions cause lateral deflection of the probe tip as it approaches the sample, which is rationalized to be the cause of the different image contrast. The results also provide a guide for future probe development to reduce these issues.


2021 ◽  
Vol 8 (06) ◽  
Author(s):  
Jane F. Emerson ◽  
David B. Chang ◽  
Stuart McNaughton ◽  
Ellen M. Emerson ◽  
Stephen A. Cerwin

2021 ◽  
Vol 6 (2) ◽  
pp. 140-145
Author(s):  
Mykola Maksymiv ◽  
◽  
Taras Rak

Contrast enhancement is a technique for increasing the contrast of an image to obtain better image quality. As many existing contrast enhancement algorithms typically add too much contrast to an image, maintaining visual quality should be considered as a part of enhancing image contrast. This paper focuses on a contrast enhancement method that is based on histogram transformations to improve contrast and uses image quality assessment to automatically select the optimal target histogram. Improvements in contrast and preservation of visual quality are taken into account in the target histogram, so this method avoids the problem of excessive increase in contrast. In the proposed method, the optimal target histogram is the weighted sum of the original histogram, homogeneous histogram and Gaussian histogram. Structural and statistical metrics of “naturalness of the image” are used to determine the weights of the corresponding histograms. Contrast images are obtained by matching the optimal target histogram. Experiments show that the proposed method gives better results compared to other existing algorithms for increasing contrast based on the transformation of histograms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
David Benjamin Ellebrecht ◽  
Sönke von Weihe

Abstract Surgeons lose most of their tactile tissue information during minimal invasive surgery and need an additional tool of intraoperative tissue recognition. Confocal laser microscopy (CLM) is a well-established method of tissue investigation. The objective of this study was to analyze the feasibility and diagnostic accuracy of CLM nervous tissue recognition. Images taken with an endoscopic CLM system of sympathetic ganglions, nerve fibers and pleural tissue were characterized in terms of specific signal-patterns ex-vivo. No fluorescent dye was used. Diagnostic accuracy of tissue classification was evaluated by newly trained observers (sensitivity, specificity, PPV, NPV and interobserver variability). Although CLM images showed low CLM image contrast, assessment of nerve tissue was feasible without any fluorescent dye. Sensitivity and specificity ranged between 0.73 and 0.9 and 0.55–1.0, respectively. PPVs were 0.71–1.0 and the NPV range was between 0.58 and 0.86. The overall interobserver variability was 0.36. The eCLM enables to evaluate nervous tissue and to distinguish between nerve fibers, ganglions and pleural tissue based on backscattered light. However, the low image contrast and the heterogeneity in correct tissue diagnosis and a fair interobserver variability indicate the limit of CLM imaging without any fluorescent dye.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7481
Author(s):  
Aiswarya Chalikunnath Venu ◽  
Rami Nasser Din ◽  
Thomas Rudszuck ◽  
Pierre Picchetti ◽  
Papri Chakraborty ◽  
...  

The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1−1 and T2−1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5– (Dy-W11), [ErIII(H2O)3GeW11O39]5– (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16− (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document