P2E-5 A New Numerical Approach to Simulate Shear Waves Generated by a Localized Radiation Force in Heterogeneous Media

Author(s):  
S. Calle ◽  
F. Patat ◽  
M. E. Hachemi ◽  
J.-P. Remenieras
2003 ◽  
Author(s):  
Stephen A. McAleavey ◽  
Kathryn R. Nightingale ◽  
Deborah L. Stutz ◽  
Stephen J. Hsu ◽  
Gregg E. Trahey

2020 ◽  
Vol 223 (2) ◽  
pp. 934-943
Author(s):  
Alejandro Duran ◽  
Thomas Planès ◽  
Anne Obermann

SUMMARY Probabilistic sensitivity kernels based on the analytical solution of the diffusion and radiative transfer equations have been used to locate tiny changes detected in late arriving coda waves. These analytical kernels accurately describe the sensitivity of coda waves towards velocity changes located at a large distance from the sensors in the acoustic diffusive regime. They are also valid to describe the acoustic waveform distortions (decorrelations) induced by isotropically scattering perturbations. However, in elastic media, there is no analytical solution that describes the complex propagation of wave energy, including mode conversions, polarizations, etc. Here, we derive sensitivity kernels using numerical simulations of wave propagation in heterogeneous media in the acoustic and elastic regimes. We decompose the wavefield into P- and S-wave components at the perturbation location in order to construct separate P to P, S to S, P to S and S to P scattering sensitivity kernels. This allows us to describe the influence of P- and S-wave scattering perturbations separately. We test our approach using acoustic and elastic numerical simulations where localized scattering perturbations are introduced. We validate the numerical sensitivity kernels by comparing them with analytical kernel predictions and with measurements of coda decorrelations on the synthetic data.


2012 ◽  
Vol 29 (1) ◽  
pp. 014301 ◽  
Author(s):  
Ming-Zhu Lu ◽  
Xue-Jin Liu ◽  
Yu Shi ◽  
Yan-Ni Kang ◽  
Yu-Bo Guan ◽  
...  

Author(s):  
Aleksei O. Syromyasov ◽  
Yulia V. Ponkratova ◽  
Tatyana V. Menshakova

Analytical description of temperature distribution in a medium with foreign inclusions is difficult due to the complicated geometry of the problem, so asymptotic and numerical methods are usually used to model thermodynamic processes in heterogeneous media. To be convinced in convergence of these methods the authors consider model problem about two identical round particles in infinite planar medium with temperature gradient which is constant at infinity. Authors refine multipole expansion of the solution obtained earlier by continuing it up to higher powers of small parameter, that is nondimensional radius of thermodynamically interacting particles. Numerical approach to the problem using ANSYS software is described; in particular, appropriate choice of approximate boundary conditions is discussed. Authors ascertain that replacement of infinite medium by finite-sized domain is important source of error in FEM. To find domain boundaries in multiple inclusions’ problem the authors develop “fictituous particle” method; according to it the cloud of particles far from the center of the cloud acts approximately as a single equivalent particle of greater size and so may be replaced by it. Basing on particular quantitative data the dependence of domain size that provides acceptable accuracy on thermal conductivities of medium and of particles is explored. Authors establish series of numerical experiments confirming convergence of multipole expansions method and FEM as well; proximity of their results is illustrated, too.


Sign in / Sign up

Export Citation Format

Share Document