A Real-Time Algorithm for Identifying Gait in a Sensory Substitution System

Author(s):  
Jamie E. Poole ◽  
Jhon P. C. Casas ◽  
Roberto A. Bolli ◽  
Hermano I. Krebs
2021 ◽  
Author(s):  
Sai Chaitanya Cherukumilli

Human-computer interaction systems have been providing new ways for amateurs to compose music using traditional computer peripherals as well as gesture interfaces. Vibro-tactile patterns, which are a vibrational art form similar to auditory music, can also be composed using human-computer interfaces. This thesis discusses the gesture interface system called the Vibro-Motion, which facilitates the composition of vibro-tactile patterns in real-time on an existing tactile sensory substitution system called the Emoti-Chair. The Vibro-Motion allows users to control the pitch, magnitude of the vibration as well as the position of the vibration. A usability evaluation of Vibro-Motion system showed it to be intuitive, comfortable and enjoyable for the participants.


2021 ◽  
Author(s):  
Mehdi Rahimi ◽  
Yantao Shen ◽  
Zhiming Liu ◽  
Fang Jiang

This paper presents our recent development on a portable and refreshable text reading and sensory substitution system for the blind or visually impaired (BVI), called Finger-eye. The system mainly consists of an opto-text processing unit and a compact electro-tactile based display that can deliver text-related electrical signals to the fingertip skin through a wearable and Braille-dot patterned electrode array and thus delivers the electro-stimulation based Braille touch sensations to the fingertip. To achieve the goal of aiding BVI to read any text not written in Braille through this portable system, in this work, a Rapid Optical Character Recognition (R-OCR) method is firstly developed for real-time processing text information based on a Fisheye imaging device mounted at the finger-wearable electro-tactile display. This allows real-time translation of printed text to electro-Braille along with natural movement of user's fingertip as if reading any Braille display or book. More importantly, an electro-tactile neuro-stimulation feedback mechanism is proposed and incorporated with the R-OCR method, which facilitates a new opto-electrotactile feedback based text line tracking control approach that enables text line following by user fingertip during reading. Multiple experiments were designed and conducted to test the ability of blindfolded participants to read through and follow the text line based on the opto-electrotactile-feedback method. The experiments show that as the result of the opto-electrotactile-feedback, the users were able to maintain their fingertip within a 2mm distance of the text while scanning a text line. This research is a significant step to aid the BVI users with a portable means to translate and follow to read any printed text to Braille, whether in the digital realm or physically, on any surface.


2021 ◽  
Author(s):  
Sai Chaitanya Cherukumilli

Human-computer interaction systems have been providing new ways for amateurs to compose music using traditional computer peripherals as well as gesture interfaces. Vibro-tactile patterns, which are a vibrational art form similar to auditory music, can also be composed using human-computer interfaces. This thesis discusses the gesture interface system called the Vibro-Motion, which facilitates the composition of vibro-tactile patterns in real-time on an existing tactile sensory substitution system called the Emoti-Chair. The Vibro-Motion allows users to control the pitch, magnitude of the vibration as well as the position of the vibration. A usability evaluation of Vibro-Motion system showed it to be intuitive, comfortable and enjoyable for the participants.


2011 ◽  
Vol 44 (1) ◽  
pp. 8933-8938
Author(s):  
Daniel Zelazo ◽  
Mathias Bürger ◽  
Frank Allgöwer
Keyword(s):  

2016 ◽  
Vol 16 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Antonio Luna Arriaga ◽  
Francis Bony ◽  
Thierry Bosch

Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Yi Wang ◽  
Si Yang

To help automated vehicles learn surrounding environments via V2X communications, it is important to detect and transfer pedestrian situation awareness to the related vehicles. Based on the characteristics of pedestrians, a real-time algorithm was developed to detect pedestrian situation awareness. In the study, the heart rate variability (HRV) and phone position were used to understand the mental state and distractions of pedestrians. The HRV analysis was used to detect the fatigue and alert state of the pedestrian, and the phone position was used to define the phone distractions of the pedestrian. A Support Vector Machine algorithm was used to classify the pedestrian’s mental state. The results indicated a good performance with 86% prediction accuracy. The developed algorithm shows high applicability to detect the pedestrian’s situation awareness in real-time, which would further extend our understanding on V2X employment and automated vehicle design.


2011 ◽  
Vol 44 (1) ◽  
pp. 5201-5206 ◽  
Author(s):  
L. Ferrarini ◽  
M. Allevi ◽  
A. Dedè

Sign in / Sign up

Export Citation Format

Share Document