tactile display
Recently Published Documents


TOTAL DOCUMENTS

675
(FIVE YEARS 92)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 9 (12) ◽  
pp. 227-231
Author(s):  
Deepak Tripathi ◽  
◽  
Aashi Srivastava ◽  

This review paper covers extensive research on the production of holograms through laser plasma interaction. The concept involves production of plasma trails through femtosecond laser pulse and capturing them through charged coupled device. This particular paper also revolves around the procedure and principle of Touchable holography. It lays emphasis on tactile display that is the primary requirement for touchable holography and also throws light on hand tracking and applications of the same.


Author(s):  
Riza Ilhan ◽  
Tural Allahverdiyev
Keyword(s):  

2021 ◽  
Vol 33 (5) ◽  
pp. 1104-1116
Author(s):  
Yoshihiro Tanaka ◽  
Shogo Shiraki ◽  
Kazuki Katayama ◽  
Kouta Minamizawa ◽  
Domenico Prattichizzo ◽  
...  

Tactile sensations are crucial for achieving precise operations. A haptic connection between a human operator and a robot has the potential to promote smooth human-robot collaboration (HRC). In this study, we assemble a bilaterally shared haptic system for grasping operations, such as both hands of humans using a bottle cap-opening task. A robot arm controls the grasping force according to the tactile information from the human that opens the cap with a finger-attached acceleration sensor. Then, the grasping force of the robot arm is fed back to the human using a wearable squeezing display. Three experiments are conducted: measurement of the just noticeable difference in the tactile display, a collaborative task with different bottles under two conditions, with and without tactile feedback, including psychological evaluations using a questionnaire, and a collaborative task under an explicit strategy. The results obtained showed that the tactile feedback provided the confidence that the cooperative robot was adjusting its action and improved the stability of the task with the explicit strategy. The results indicate the effectiveness of the tactile feedback and the requirement for an explicit strategy of operators, providing insight into the design of an HRC with bilaterally shared haptic perception.


2021 ◽  
Vol 150 (4) ◽  
pp. A172-A172
Author(s):  
Lillian Fullford ◽  
Robert D. White ◽  
Jonathan Bernstein

2021 ◽  
Vol 118 (39) ◽  
pp. e2106553118
Author(s):  
Ronald H. Heisser ◽  
Cameron A. Aubin ◽  
Ofek Peretz ◽  
Nicholas Kincaid ◽  
Hyeon Seok An ◽  
...  

Existing tactile stimulation technologies powered by small actuators offer low-resolution stimuli compared to the enormous mechanoreceptor density of human skin. Arrays of soft pneumatic actuators initially show promise as small-resolution (1- to 3-mm diameter), highly conformable tactile display strategies yet ultimately fail because of their need for valves bulkier than the actuators themselves. In this paper, we demonstrate an array of individually addressable, soft fluidic actuators that operate without electromechanical valves. We achieve this by using microscale combustion and localized thermal flame quenching. Precisely, liquid metal electrodes produce sparks to ignite fuel lean methane–oxygen mixtures in a 5-mm diameter, 2-mm tall silicone cylinder. The exothermic reaction quickly pressurizes the cylinder, displacing a silicone membrane up to 6 mm in under 1 ms. This device has an estimated free-inflation instantaneous stroke power of 3 W. The maximum reported operational frequency of these cylinders is 1.2 kHz with average displacements of ∼100 µm. We demonstrate that, at these small scales, the wall-quenching flame behavior also allows operation of a 3 × 3 array of 3-mm diameter cylinders with 4-mm pitch. Though we primarily present our device as a tactile display technology, it is a platform microactuator technology with application beyond this one.


2021 ◽  
Author(s):  
Verindi Vekemans ◽  
Ward Leenders ◽  
Sijie Zhu ◽  
Rong-Hao Liang
Keyword(s):  

2021 ◽  
Author(s):  
Mehdi Rahimi ◽  
Yantao Shen ◽  
Zhiming Liu ◽  
Fang Jiang

This paper presents our recent development on a portable and refreshable text reading and sensory substitution system for the blind or visually impaired (BVI), called Finger-eye. The system mainly consists of an opto-text processing unit and a compact electro-tactile based display that can deliver text-related electrical signals to the fingertip skin through a wearable and Braille-dot patterned electrode array and thus delivers the electro-stimulation based Braille touch sensations to the fingertip. To achieve the goal of aiding BVI to read any text not written in Braille through this portable system, in this work, a Rapid Optical Character Recognition (R-OCR) method is firstly developed for real-time processing text information based on a Fisheye imaging device mounted at the finger-wearable electro-tactile display. This allows real-time translation of printed text to electro-Braille along with natural movement of user's fingertip as if reading any Braille display or book. More importantly, an electro-tactile neuro-stimulation feedback mechanism is proposed and incorporated with the R-OCR method, which facilitates a new opto-electrotactile feedback based text line tracking control approach that enables text line following by user fingertip during reading. Multiple experiments were designed and conducted to test the ability of blindfolded participants to read through and follow the text line based on the opto-electrotactile-feedback method. The experiments show that as the result of the opto-electrotactile-feedback, the users were able to maintain their fingertip within a 2mm distance of the text while scanning a text line. This research is a significant step to aid the BVI users with a portable means to translate and follow to read any printed text to Braille, whether in the digital realm or physically, on any surface.


2021 ◽  
Author(s):  
Masahiro Fujiwara ◽  
Yu Someya ◽  
Yasutoshi Makino ◽  
Hiroyuki Shinoda

Sign in / Sign up

Export Citation Format

Share Document