A reconfigurable antenna subsystem for the rfid applications by using phased array antennas

Author(s):  
Hsi-Tseng Chou ◽  
Ming-Yu Lee ◽  
Chia-Te Yu ◽  
Chang-Fa Yang
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
ByungKuon Ahn ◽  
In-June Hwang ◽  
Kwang-Seok Kim ◽  
Soo-Chang Chae ◽  
Jong-Won Yu ◽  
...  

AbstractThis paper presents a wide-angle scanning phased array antenna using high gain pattern reconfigurable antenna (PRA) elements. Using PRA elements is an attractive solution for wide-angle scanning phased array antennas because the scanning range can be divided into several subspaces. To achieve the desired scanning performance, some characteristics of the PRA element such as the number of switching modes, tilt angle, and maximum half-power beamwidth (HPBW) are required. We analyzed the required characteristics of the PRA element according to the target scanning range and element spacing, and presented a PRA element design guideline for phased array antennas. In accordance with the guideline, the scanning range was set as ±70° and a high gain PRA element with three reconfigurable patterns was used to compose an 8x1 array antenna with 0.9 λ0 spacing. After analyzing whether the active element patterns meet the guideline, the array antenna was fabricated and measured to demonstrate the scanning performance. The fabricated array can scan its beam from -70° to 70° by dividing the scanning range into three subspaces. It shows that even if the array antenna has large element spacing, the desired scanning performance can be obtained using the elements designed under the guideline.


Author(s):  
Hsi-Tseng Chou ◽  
Kai-Hao Bai ◽  
Chien-Te Yu ◽  
Chun-Chin Sun ◽  
Yao-Jiu Chen ◽  
...  

1987 ◽  
Author(s):  
M. G. Parent ◽  
L. Goldberg ◽  
P. D. Stilwell, Jr.

Author(s):  
Tarek Sallam ◽  
Ahmed M. Attiya

Abstract Achieving robust and fast two-dimensional adaptive beamforming of phased array antennas is a challenging problem due to its high-computational complexity. To address this problem, a deep-learning-based beamforming method is presented in this paper. In particular, the optimum weight vector is computed by modeling the problem as a convolutional neural network (CNN), which is trained with I/O pairs obtained from the optimum Wiener solution. In order to exhibit the robustness of the new technique, it is applied on an 8 × 8 phased array antenna and compared with a shallow (non-deep) neural network namely, radial basis function neural network. The results reveal that the CNN leads to nearly optimal Wiener weights even in the presence of array imperfections.


Sign in / Sign up

Export Citation Format

Share Document