adaptive beamforming
Recently Published Documents


TOTAL DOCUMENTS

1746
(FIVE YEARS 309)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 560
Author(s):  
Chang-Lin Hu ◽  
Chien-Ju Li ◽  
I-Cheng Cheng ◽  
Peng-Zhi Sun ◽  
Brian Hsu ◽  
...  

Handheld ultrasound devices have been widely used for diagnostic applications. The use of the acoustic-field beamforming (AFB) method has been proposed for handheld ultrasound to reduce electricity consumption and avoid battery and unwanted heat issues. However, the image quality, such as the contrast ratio and contrast-to-noise-ratio, are poorer with this technique than with the conventional delay-and-sum method. To address the problems associated with the worse image quality in AFB imaging, in this paper we propose the use of an AFB-based generalized coherence factor (GCF) technique, in which the GCF weighting developed for adaptive beamforming is extended to AFB. Simulation data, experimental results, and in vivo testing verified the efficacy of our proposed AFB-based GCF technique.


2021 ◽  
Author(s):  
Jiahao Tian ◽  
Yuchang Suo ◽  
Jianxiong Zhou ◽  
Yongsheng Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuxi Du ◽  
Weijia Cui ◽  
Yinsheng Wang ◽  
Bin Ba ◽  
Fengtong Mei

As we all know, the model mismatch, primarily when the desired signal exists in the training data, or when the sample data is used for training, will seriously affect algorithm performance. This paper combines the subspace algorithm based on direction of arrival (DOA) estimation with the adaptive beamforming. It proposes a reconstruction algorithm based on the interference plus noise covariance matrix (INCM). Firstly, the eigenvector of the desired signal is obtained according to the eigenvalue decomposition of the subspace algorithm, and the eigenvector is used as the estimated value of the desired signal steering vector (SV). Then the INCM is reconstructed according to the estimated parameters to remove the adverse effect of the desired signal component on the beamformer. Finally, the estimated desired signal SV and the reconstructed INCM are used to calculate the weight. Compared with the previous work, the proposed algorithm not only improves the performance of the adaptive beamformer but also dramatically reduces the complexity. Simulation experiment results show the effectiveness and robustness of the proposed beamforming algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7783
Author(s):  
Yanliang Duan ◽  
Xinhua Yu ◽  
Lirong Mei ◽  
Weiping Cao

Adaptive beamforming is sensitive to steering vector (SV) and covariance matrix mismatches, especially when the signal of interest (SOI) component exists in the training sequence. In this paper, we present a low-complexity robust adaptive beamforming (RAB) method based on an interference–noise covariance matrix (INCM) reconstruction and SOI SV estimation. First, the proposed method employs the minimum mean square error criterion to construct the blocking matrix. Then, the projection matrix is obtained by projecting the blocking matrix onto the signal subspace of the sample covariance matrix (SCM). The INCM is reconstructed by replacing part of the eigenvector columns of the SCM with the corresponding eigenvectors of the projection matrix. On the other hand, the SOI SV is estimated via the iterative mismatch approximation method. The proposed method only needs to know the priori-knowledge of the array geometry and angular region where the SOI is located. The simulation results showed that the proposed method can deal with multiple types of mismatches, while taking into account both low complexity and high robustness.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012042
Author(s):  
Yongshao Xu ◽  
Bingzheng Liu ◽  
Haotian Shang ◽  
Mingduo Wang

Abstract Rotating machinery often produces continuous impact during operation due to the change of load and speed, which shows the characteristics of unsteady state and time-varying. Its working state can not be comprehensively judged by a single vibration state parameter. Therefore, this paper proposes to use acoustic sensors to collect the fault noise signal of rotating machinery, and use the whole column of sensors to detect the fault noise signal. Based on the microphone array, this paper studies the adaptive beamforming algorithm (MVDR) to locate the fault source of rotating machinery in space. The effect of fault source location is verified by simulation and equipment measurement experiments. The acoustic sensor does not in contact with the equipment, which will not damage the generator set, but also provide more effective information for fault source location and fault diagnosis and analysis.


Author(s):  
Yong Wang ◽  
Yuzhu Shui ◽  
Xiaobo Yang ◽  
Zhaoyu Li ◽  
Wen Wang

AbstractRespiration and heartbeats rates are important physiological assessment indicators that provide valid prior-knowledge for the diagnosis of numerous diseases. However, most of the current research focuses on the vital signs measurement of single target, and multi-target vital signs detection has not received much attention. In this paper, we use frequency-modulated continuous wave (FMCW) radar to measure the vital signs signals of multi-target. First, we apply the three-dimensional fast Fourier transform (3D-FFT) method to separate multiple targets and get their distance and azimuth information. Subsequently, the linear constrained minimum variance-based adaptive beamforming (LCMV-ADBF) technique is proposed to form a spatially distributed beams on the targets of interest directions. Finally, a compressive sensing based on orthogonal matching pursuit (CS-OMP) method and rigrsure adaptive soft threshold noise reduction based on discrete wavelet transform (RA-DWT) method are present to extract the respiratory and heartbeat signals. We perform tests in a real experimental environment and compare the proposed method with reference devices. The results show that the degrees of agreement for respiratory and heartbeat are 89% and 87%, respectively, for two human targets. The level of agreement for respiratory and heartbeat is 87% and 85%, respectively, for three human targets, proving the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document