Underwater target's size/shape dynamic analysis for fast target recognition using sonar images

Author(s):  
Yingchun Lu ◽  
Enfang Sang
Author(s):  
Leilei Jin ◽  
Hong LIANG ◽  
Changsheng Yang

Underwater target recognition is one core technology of underwater unmanned detection. To improve the accuracy of underwater automatic target recognition, a sonar image recognition method based on convolutional neural network was proposed and the underwater target recognition model was established according to the characteristics of sonar images. Firstly, the sonar image was segmented and clipped with a saliency detection method to reduce the dimension of input data, and to reduce the interference of image background to the feature extraction process. Secondly, by using stacked convolutional layers and pooling layers, the high-level semantic information of the target was automatically learned from the input sonar image, to avoid damaging the effective information caused by extracting image features manually. Finally, the spatial pyramid pooling method was used to extract the multi-scale information from the sonar feature maps, which was to make up for the lack of detailed information of sonar images and solve the problem caused by the inconsistent size of input images. On the collected sonar image dataset, the experimental results show that the target recognition accuracy of the present method can recognize underwater targets more accurately and efficiently than the conventional convolutional neural networks.


2021 ◽  
Vol 13 (18) ◽  
pp. 3555
Author(s):  
Yongcan Yu ◽  
Jianhu Zhao ◽  
Quanhua Gong ◽  
Chao Huang ◽  
Gen Zheng ◽  
...  

To overcome the shortcomings of the traditional manual detection of underwater targets in side-scan sonar (SSS) images, a real-time automatic target recognition (ATR) method is proposed in this paper. This method consists of image preprocessing, sampling, ATR by integration of the transformer module and YOLOv5s (that is, TR–YOLOv5s), and target localization. By considering the target-sparse and feature-barren characteristics of SSS images, a novel TR–YOLOv5s network and a down-sampling principle are put forward, and the attention mechanism is introduced in the method to meet the requirements of accuracy and efficiency for underwater target recognition. Experiments verified the proposed method achieved 85.6% mean average precision (mAP) and 87.8% macro-F2 score, and brought 12.5% and 10.6% gains compared with the YOLOv5s network trained from scratch, and had the real-time recognition speed of about 0.068 s per image.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 173450-173460
Author(s):  
Tang Yulin ◽  
Shaohua Jin ◽  
Gang Bian ◽  
Yonghou Zhang

Sign in / Sign up

Export Citation Format

Share Document