Real-time Illumination Estimation for Mixed Reality on Mobile Devices

Author(s):  
Di Xu ◽  
Zhen Li ◽  
Yanning Zhang
Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 9-11
Author(s):  
Tomohiro Fukuda

Mixed reality (MR) is rapidly becoming a vital tool, not just in gaming, but also in education, medicine, construction and environmental management. The term refers to systems in which computer-generated content is superimposed over objects in a real-world environment across one or more sensory modalities. Although most of us have heard of the use of MR in computer games, it also has applications in military and aviation training, as well as tourism, healthcare and more. In addition, it has the potential for use in architecture and design, where buildings can be superimposed in existing locations to render 3D generations of plans. However, one major challenge that remains in MR development is the issue of real-time occlusion. This refers to hiding 3D virtual objects behind real articles. Dr Tomohiro Fukuda, who is based at the Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering at Osaka University in Japan, is an expert in this field. Researchers, led by Dr Tomohiro Fukuda, are tackling the issue of occlusion in MR. They are currently developing a MR system that realises real-time occlusion by harnessing deep learning to achieve an outdoor landscape design simulation using a semantic segmentation technique. This methodology can be used to automatically estimate the visual environment prior to and after construction projects.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-22
Author(s):  
David Langerman ◽  
Alan George

High-resolution, low-latency apps in computer vision are ubiquitous in today’s world of mixed-reality devices. These innovations provide a platform that can leverage the improving technology of depth sensors and embedded accelerators to enable higher-resolution, lower-latency processing for 3D scenes using depth-upsampling algorithms. This research demonstrates that filter-based upsampling algorithms are feasible for mixed-reality apps using low-power hardware accelerators. The authors parallelized and evaluated a depth-upsampling algorithm on two different devices: a reconfigurable-logic FPGA embedded within a low-power SoC; and a fixed-logic embedded graphics processing unit. We demonstrate that both accelerators can meet the real-time requirements of 11 ms latency for mixed-reality apps. 1


Sign in / Sign up

Export Citation Format

Share Document