Distributed Filter Design and Power Allocation for Small-Cell MIMO Networks

Author(s):  
Guojun Xiong ◽  
Taejoon Kim ◽  
David J. Love
2019 ◽  
Vol 67 (11) ◽  
pp. 8124-8136 ◽  
Author(s):  
Xinruo Zhang ◽  
Mohammad Reza Nakhai ◽  
Gan Zheng ◽  
Sangarapillai Lambotharan ◽  
Bjorn Ottersten

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xuefei Peng ◽  
Jiandong Li ◽  
Yifei Xu

We firstly formulate the energy efficiency (EE) maximization problem of joint user association and power allocation considering minimum data rate requirement of small cell users (SUEs) and maximum transmit power constraint of small cell base stations (SBSs), which is NP-hard. Then, we propose a dynamic coordinated multipoint joint transmission (CoMP-JT) algorithm to improve EE. In the first phase, SUEs are associated with the SBSs close to them to reduce the loss of power by the proposed user association algorithm, where the associated SBSs of each small cell user (SUE) form a dynamic CoMP-JT set. In the second phase, through the methods of fractional programming and successive convex approximation, we transform the EE maximization subproblem of power allocation for SBSs into a convex problem that can be solved by proposed power allocation optimization algorithm. Moreover, we show that the proposed solution has a much lower computational complexity than that of the optimal solution obtained by exhaustive search. Simulation results demonstrate that the proposed solution has a better performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaoge Huang ◽  
Yangyang Li ◽  
She Tang ◽  
Qianbin Chen

We consider a holistic approach for dual-access cognitive small cell (DACS) networks, which uses the LTE air interface in both licensed and unlicensed bands. In the licensed band, we consider a sensing-based power allocation scheme to maximize the sum data rate of DACSs by jointly optimizing the cell selection, the sensing operation, and the power allocation under the interference constraint to macrocell users. Due to intercell interference and the integer nature of the cell selection, the resulting optimization problems lead to a nonconvex integer programming. We reformulate the problem to a nonconvex power allocation game and find the relaxed equilibria, quasi-Nash equilibrium. Furthermore, in order to guarantee the fairness of the whole system, we propose a dynamic satisfaction-based dual-band traffic balancing (SDTB) algorithm over licensed and unlicensed bands for DACSs which aims at maximizing the overall satisfaction of the system. We obtain the optimal transmission time in the unlicensed band to ensure the proportional fair coexistence with WiFi while guaranteeing the traffic balancing of DACSs. Simulation results demonstrate that the SDTB algorithm could achieve a considerable performance improvement relative to the schemes in literature, while providing a tradeoff between maximizing the total data rate and achieving better fairness among networks.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 1272-1283 ◽  
Author(s):  
Fen Cheng ◽  
Yan Yu ◽  
Zhongyuan Zhao ◽  
Nan Zhao ◽  
Yunfei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document