space time coding
Recently Published Documents


TOTAL DOCUMENTS

801
(FIVE YEARS 67)

H-INDEX

47
(FIVE YEARS 3)

Author(s):  
Xuexing Li ◽  
Wenhui Zhang

AbstractBinary defocusing technique can effectively break the limitation of hardware speed, which has been widely used in the real-time three-dimensional (3D) reconstruction. In addition, fusion technique can reduce captured images count for a 3D scene, which helps to improve real-time performance. Unfortunately, it is difficult for binary defocusing technique and fusion technique working simultaneously. To this end, our research established a novel system framework consisting of dual projectors and a camera, where the position and posture of the dual projectors are not strictly required. And, the dual projectors can adjust defocusing level independently. Based on this, this paper proposed a complementary decoding method with unconstrained dual projectors. The core idea is that low-resolution information is employed for high-resolution phase unwrapping. For this purpose, we developed the low-resolution depth extraction strategy based on periodic space-time coding patterns and the method from the low-resolution order to high-resolution order of fringe. Finally, experimental results demonstrated the performance of our proposed method, and the proposed method only requires three images for a 3D scene, as well as has strong robustness, expansibility, and implementation.


Author(s):  
M.S. Tokar ◽  
◽  
I.V. Ryabov ◽  

In radio communication systems, when implementing coherent types of reception, it is assumed that the receiver knows information about the state of the communication channel, which is achieved by introducing signal redundancy (pilot signals). The frequency of sending pilot signals depends on factors that change the state of the communication channel, one of which is the high speed of movement of mobile stations. The use of pilot signals not only hinders the efficient use of the radio frequency resource, but also, in the case of fast fading, does not allow the channel to be estimated and tracked with the required accuracy. These disadvantages can be eliminated by using the differential transmission method, for the implementation of which there is no need to know information about the state of the channel. The application of the principles of differential transmission to space-time coding does not find sufficiently effective solutions that combine low computational complexity and energy efficiency of differential coding methods.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Lei Zhang ◽  
Tie Jun Cui

Space-time-modulated metastructures characterized by spatiotemporally varying properties have recently attracted great interest and become one of the most fascinating and promising research fields. In the meantime, space-time-coding digital metasurfaces with inherently programmable natures emerge as powerful and versatile platforms for implementing the spatiotemporal modulations, which have been successfully realized and used to manipulate the electromagnetic waves in both the spectral and spatial domains. In this article, we systematically introduce the general concepts and working principles of space-time-coding digital metasurfaces and provide a comprehensive survey of recent advances and representative applications in this field. Specifically, we illustrate the examples of complicated wave manipulations, including harmonic beam control and programmable nonreciprocal effect. The fascinating strategy of space-time-coding opens the door to exciting scenarios for information systems, with abundant applications ranging from wireless communications to imaging and radars. We summarize this review by presenting the perspectives on the existing challenges and future directions in this fast-growing research field.


2021 ◽  
Author(s):  
Di Wang ◽  
Yi-Dong Wang ◽  
Li-Zheng Yin ◽  
Yun-Hua Tan ◽  
Pu-Kun Liu

Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1753-1764
Author(s):  
Hamid Rajabalipanah ◽  
Ali Abdolali ◽  
Shahid Iqbal ◽  
Lei Zhang ◽  
Tie Jun Cui

Abstract In the quest to realize analog signal processing using subwavelength metasurfaces, in this paper, we present the first demonstration of programmable time-modulated metasurface processors based on the key properties of spatial Fourier transformation. Exploiting space-time coding strategy enables local, independent, and real-time engineering of not only amplitude but also phase profile of the contributing reflective digital meta-atoms at both central and harmonic frequencies. Several illustrative examples are demonstrated to show that the proposed multifunctional calculus metasurface is capable of implementing a large class of useful mathematical operators, including 1st- and 2nd-order spatial differentiation, 1st-order spatial integration, and integro-differential equation solving accompanied by frequency conversions. Unlike the recent proposals based on the Green’s function (GF) method, the designed time-modulated signal processor effectively operates for input signals containing wide spatial frequency bandwidths with an acceptable gain level. Proof-of-principle simulations are also reported to demonstrate the successful realization of image processing functions like edge detection. This time-varying wave-based computing system can set the direction for future developments of programmable metasurfaces with highly promising applications in ultrafast equation solving, real-time and continuous signal processing, and imaging.


Sign in / Sign up

Export Citation Format

Share Document