Sliding model synchronization controller design for chaotic neural network with time-varying delay

Author(s):  
Ran Zhen ◽  
Xueli Wu ◽  
Jianhua Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fengxia Xu ◽  
Yao Cheng ◽  
Hongliang Ren ◽  
Shili Wang

U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Guoxin Chen ◽  
Zhengrong Xiang ◽  
Hamid Reza Karimi

This paper investigates the problem of observer-based robust control for a class of switched stochastic systems with time-varying delay. Based on the average dwell time method, an exponential stability criterion for switched stochastic delay systems is proposed. Then, performance analysis and observer-based robust controller design for the underlying systems are developed. Finally, a numerical example is presented to illustrate the effectiveness of the proposed approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Le Zhang ◽  
Jinnan Wu

This paper deals with the reliable control problem of nonlinear systems represented by switched fuzzy systems (SFS) with time-varying delay, where each subsystem of switched system is a time-varying delay fuzzy system. A switched fuzzy system with a Takagi and Sugeno (T-S) fuzzy model, which differs from existing ones, is firstly employed to describe a nonlinear system. When the actuators are serious failure, the residual part of actuators cannot make original system stability, using switching technique depends on the states of observers, and the fuzzy reliable controller based on measured observers states instead of the original system states information is built. The stabilization criterion of the reliable control problem is given for the case that the state of original system is unmeasurable. The multi-Lyapunov functions method is utilized to the stability analysis and controller design for time-varying delay switched fuzzy systems with faulty actuators. Moreover, observers switching strategy achieving estimation errors decreasing uniformly asymptotically to zero of the switched fuzzy systems is considered. Finally, the stabilization criterion is transformed into the solvability of sufficient linear matrix inequality (LMI) conditions. To illustrate the effectiveness of the proposed stabilization criterion and controller design approaches, a designed numerical example is studied, and some simulations are provided.


Sign in / Sign up

Export Citation Format

Share Document