Downlink Performance Analysis of the Multi-beam GEO Satellite Communication Systems

Author(s):  
Meng Yuan ◽  
Yixiao Gu ◽  
Bin Xia
2013 ◽  
Vol 846-847 ◽  
pp. 651-654
Author(s):  
Ya Dan Zheng ◽  
Jian Bo Li ◽  
Yong Luo ◽  
Ming Ke Dong ◽  
Jian Jun Wu

In this paper, a hybrid HARQ scheme was proposed by combing forced retransmission and traditional HARQ together, after analyzing the characteristics of satellite channel and the problem encountered when utilizing HARQ scheme in GEO satellite communication system. The forced retransmission can make a packet be correctly decoded more quickly and shorten the waiting delay. Meanwhile, to balance the delay and throughput, the proper parameters were given for the proposed hybrid scheme. Simulation results show that the proposed scheme performs well at decreasing the waiting delay, especially when SNR is low. The conclusion can be drawn that the proposed scheme can improve the HARQ performance in GEO satellite communication systems.


2021 ◽  
Vol 1 ◽  
Author(s):  
Eva Lagunas ◽  
Mirza Golam Kibria ◽  
Hayder Al-Hraishawi ◽  
Nicola Maturo ◽  
Symeon Chatzinotas

Beam hopping (BH) and precoding are two trending technologies for high-throughput satellite (HTS) systems. While BH enables the flexible adaptation of the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this study, we consider an HTS system that employs BH in conjunction with precoding in an attempt to bring the benefits of both in one. In particular, we propose the concept of cluster hopping (CH), where a set of adjacent beams are simultaneously illuminated with the same frequency resource. On this line, we propose an efficient time–space illumination pattern design, where we determine the set of clusters that shall be illuminated simultaneously at each hopping event along with the dwelling time. The CH time–space illumination pattern design formulation is shown to be theoretically intractable due to the combinatorial nature of the problem and the impact of the actual illumination design on the resulting interference. For this, we make some design decisions on the beam–cluster design that open the door to a less complex still well-performing solution. Supporting results based on numerical simulations are provided which validate the effectiveness of the proposed CH concept and a time–space illumination pattern design with respect to benchmark schemes.


Sign in / Sign up

Export Citation Format

Share Document