scholarly journals An intelligent depth-based obstacle detection system for visually-impaired aid applications

Author(s):  
Chia-Hsiang Lee ◽  
Yu-Chi Su ◽  
Liang-Gee Chen
Author(s):  
Adedotun O. Owojori ◽  
Jane O. O. Mebawondu ◽  
Jacob O. Mebawondu

Out of seven billion of the world’s population, two billion and two million that amounts to 31.43% have visual impairment or blindness according to the World Health Organization (WHO) statistics report. Hence, the need to develop a wearable device with reduced size, efficient power usage, and for more comfortability of the visually impaired or blind people. This work aims at designing an obstacle detection system using an ultrasonic sensor interfaced with an Arduino board to track location, alert patient, and send location messages of visually impaired patient to guardians as a feedback mechanism using a GPRS and GSM module. The C programming language was used as the instruction code to interface Arduino device to carry out given tasks. At the design level, the circuit was first tested on Proteus software for simulation purposes before its hardware implementation. The results obtained from the test show the variation of distance as the patient approaches the obstacle, and messages received when a fix was obtained. This design concept would help reduce danger across the way of those with sight defects and allow them to go to familiar places without any aid smoothly.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012030
Author(s):  
F S Kamaruddin ◽  
N H Mahmood ◽  
M A Abdul Razak ◽  
N A Zakaria

Abstract Visually impaired people usually have a lot of difficulties involved in interacting with their environment. Physical movement is a major challenge for them, because it can be tricky to make a distinction about where they are and how they can move from one place to another. In this project, smart assistive shoes with Internet of Things (IoT) implementation is designed. These shoes are equipped with ultrasonic sensors and vibration motors that can warn users about obstacles. Next, the IoT system is implemented using Adafruit IO and If This, Then That (IFTTT) to transfer data between Google Assistant and buzzer for shoes position finder purposes. NodeMCU allows the buzzer on shoes to be controlled by the Internet using its WiFi module which is connected to the mobile phone hotspots. As a result, shoes with an obstacle detection system which can detect obstacles within 20 cm distance and shoes position finder using Google Assistant are designed. In conclusion, hopefully these shoes will become one of the alternatives to aid the independent movement of the visually impaired people in the future.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Huy-Hieu Pham ◽  
Thi-Lan Le ◽  
Nicolas Vuillerme

Any mobility aid for the visually impaired people should be able to accurately detect and warn about nearly obstacles. In this paper, we present a method for support system to detect obstacle in indoor environment based on Kinect sensor and 3D-image processing. Color-Depth data of the scene in front of the user is collected using the Kinect with the support of the standard framework for 3D sensing OpenNI and processed by PCL library to extract accurate 3D information of the obstacles. The experiments have been performed with the dataset in multiple indoor scenarios and in different lighting conditions. Results showed that our system is able to accurately detect the four types of obstacle: walls, doors, stairs, and a residual class that covers loose obstacles on the floor. Precisely, walls and loose obstacles on the floor are detected in practically all cases, whereas doors are detected in 90.69% out of 43 positive image samples. For the step detection, we have correctly detected the upstairs in 97.33% out of 75 positive images while the correct rate of downstairs detection is lower with 89.47% from 38 positive images. Our method further allows the computation of the distance between the user and the obstacles.


This paper describes a obstacle detection system for visually impaired people using Image processing in MATLAB.This system, together with ultra-sonic sensor interfaced with Arduino detects stairs and doors with or without signage and distance of these objects from the user. This information is conveyed to the user through a speaker. The results show satisfactory accuracy in detecting stairs and extracting different signage on doors such as that of washroom, exit, elevator etc.


Sign in / Sign up

Export Citation Format

Share Document