Classification of proteins in intracellular and secretory pathway using global descriptors of amino acid sequence

Author(s):  
Geetha Govindan ◽  
Achuthsankar S. Nair
1998 ◽  
Vol 46 (10) ◽  
pp. 1193-1197 ◽  
Author(s):  
Marcelo J. Perone ◽  
Simon Windeatt ◽  
Ewan Morrison ◽  
Andy Shering ◽  
Peter Tomasec ◽  
...  

We investigated the intracellular localization of CRH in transiently transfected COS-7 cells expressing the full-length rat corticotropin-releasing hormone (CRH) precursor cDNA. CRH synthesized by transfected COS-7 cells is mainly stored intracellularly. In contrast, CHO-K1 cells expressing the same CRH precursor stored and released equal amounts of immunoreactive (IR)-CRH. Ultrastructural analysis revealed that CRH is stored in electron-dense aggregates in the RER of transiently transfected COS-7 cells and does not migrate into the Golgi apparatus. On the basis of the different intracellular localization, storage, and release of CRH in COS-7 and CHO-K1 cells, we hypothesize that the intracellular trafficking of CRH within the constitutive secretory pathway for protein secretion not only depends on its primary amino acid sequence but might also be influenced by intracellular conditions or factors.


1998 ◽  
Vol 329 (3) ◽  
pp. 719-719 ◽  
Author(s):  
J. A. CAMPBELL ◽  
G. J. DAVIES ◽  
V. BULONE ◽  
B. HENRISSAT

1997 ◽  
Vol 326 (3) ◽  
pp. 929-939 ◽  
Author(s):  
James A. CAMPBELL ◽  
Gideon J. DAVIES ◽  
Vincent BULONE ◽  
Bernard HENRISSAT

1991 ◽  
Vol 280 (2) ◽  
pp. 309-316 ◽  
Author(s):  
B Henrissat

The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised.


1993 ◽  
Vol 293 (3) ◽  
pp. 781-788 ◽  
Author(s):  
B Henrissat ◽  
A Bairoch

301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank.


Sign in / Sign up

Export Citation Format

Share Document