phospholipases a2
Recently Published Documents


TOTAL DOCUMENTS

764
(FIVE YEARS 75)

H-INDEX

64
(FIVE YEARS 7)

2022 ◽  
Vol 18 (2) ◽  
pp. 873-888
Author(s):  
Adrijan Ivanušec ◽  
Jernej Šribar ◽  
Igor Križaj
Keyword(s):  

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 868
Author(s):  
Vanessa Moreira ◽  
Elbio Leiguez ◽  
Priscila Motta Janovits ◽  
Rodrigo Maia-Marques ◽  
Cristina Maria Fernandes ◽  
...  

Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Daniela Enriquez-Ochoa ◽  
David Meléndez-Martínez ◽  
José Manuel Aguilar-Yáñez ◽  
Cuauhtemoc Licona-Cassani ◽  
Karla Mayolo-Deloisa

AbstractSnake venoms are rich sources of proteins with potential biotechnological and pharmaceutical applications. Among them, metalloproteases (MPs) and phospholipases A2 (PLA2) are the most abundant. Their isolation involves a multistep chromatographic approach, which has proven to be effective, however implies high operating costs and long processing times. In this study, a cost-effective and simple method based on aqueous two-phase systems (ATPS) was developed to recover MPs and PLA2 from Crotalus molossus nigrescens venom. A system with PEG 400 g mol−1, volume ratio (VR) 1, tie line length (TLL) 25% w/w and pH 7 showed the best performance for PLA2 recovery. In systems with PEG 400 g mol−1, VR 1, TLL 15% w/w, pH 7 and 1 and 3% w/w of NaCl, selective recovery of MP subtype P-III was achieved; whereas, in a system with PEG 400 g mol−1, VR 1, TLL 25% w/w and pH 8.5, MP subtypes P-I and P-III were recovered. Due to their low costs, ethanol–salt systems were also evaluated, however, failed to differentially partition PLA2 and MPs. The use of ATPS could contribute to the simplification and cost reduction of protein isolation processes from snake venoms and other toxin fluids, as well as potentially aid their biochemical, proteomic and biological analyses. Graphic Abstract


2021 ◽  
Vol 9 (4) ◽  
pp. 384-396
Author(s):  
Daniela Aparecida Oliveira ◽  
Pedro Henrique Souza Cesar ◽  
Marcus Vinicius Cardoso Trento ◽  
Mariana Aparecida Braga ◽  
Silvana Marcussi

Herbal medicines represent an advantageous alternative for the prevention and treatment of several diseases when compared to allopathic medicines. Averrhoa carambola (Oxalidaceae) is a plant rich in phenolic compounds and popularly known for its medicinal properties such as anti-inflammatory, antioxidant, and hypoglycemic. Different enzymes of the human organism participate in physiological processes which involve hemostasis, inflammation, and formation of new tissue. These enzymes are highlighted as pharmaceutical targets for the treatment of numerous pathologies. The present work evaluated the aqueous and ethanolic extracts from A. carambola leaves on phospholipase, hemolytic, caseinolytic, thrombolytic, coagulant, and fibrinogenolytic activities induced by phospholipases A2 and proteases. Phenolic compounds and total flavonoids were quantified in the aqueous and ethanolic extracts of the leaves of Averrhoa carambola. These extracts were evaluated, in vitro, on phospholipase, proteolytic, hemolytic, thrombolytic and fibrinogenolytic activities induced by snake venoms. The results confirm the pharmacological potential of A. carambola since the extracts were able to modulate all evaluated activities related to hemostasis through inhibitions or potentiation of the enzymatic activities (phospholipases A2 and proteases). The constituents of A. carambola may act interfering in processes such as coagulation, thrombus dissolution, and fibrinogenolysis.


Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 4-14
Author(s):  
Alexey S. Averin ◽  
Yuri N. Utkin

Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.


2021 ◽  
Vol 1 (4) ◽  
pp. 100071
Author(s):  
Tamara Rezende Marques ◽  
Mariana Aparecida Braga ◽  
Pedro Henrique Souza Cesar ◽  
Nilton Pereira de Souza ◽  
Rodrigo Martins Fráguas ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2963
Author(s):  
Grace Y. Sun ◽  
Xue Geng ◽  
Tao Teng ◽  
Bo Yang ◽  
Michael K. Appenteng ◽  
...  

Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nhi Thuc Vuong ◽  
Timothy N. W. Jackson ◽  
Christine E. Wright

Human envenoming by Australian brown snakes (Pseudonaja spp.) may result in potentially life-threatening hypotension and subsequent cardiovascular collapse. There have been relatively few studies of the cardiovascular and sympathetic effects of Pseudonaja spp. venoms. In this study, we have examined the effects of venom from five brown snake species—P. affinis, aspidorhyncha, inframacula, nuchalis, and textilis—on cardiac inotropic and chronotropic responses, vascular tone, and sympathetic nerve-induced vascular contractions in rat isolated tissues. The role of phospholipases A2 (PLA2s) in venom-induced effects was assessed with the sPLA2 inhibitor varespladib. In rat isolated left and right atria, there were no physiologically relevant effects of Pseudonaja venoms (0.1–30 µg/ml) on left atrial force of contraction (inotropy) or right atrial rate (chronotropy). In contrast, in isolated small mesenteric arteries precontracted with a thromboxane mimetic, each of the five brown snake venoms (at 30 µg/ml) caused marked vasorelaxation (−60 to –90% of contractile tone). Pretreatment with varespladib (1 µM) significantly inhibited the vasorelaxation caused by P. aspidorhyncha, P. nuchalis, and P. textilis venoms. Electrically induced sympathetic nerve-mediated contractions of mesenteric arteries were significantly attenuated by only P. textilis, and P. affinis venoms (30 µg/ml) and these sympatholytic effects were inhibited by varespladib (1 µM). Based on their inhibition with the sPLA2 inhibitor varespladib, we conclude that PLA2 toxins in P. aspidorhyncha, P. nuchalis, and P. textilis venoms are involved in brown snake venom-induced vasorelaxation and the sympatholytic effects of P. affinis, and P. textilis venoms. Our study supports the promising potential role of varespladib as an initial (pre-referral) and/or adjunct (in combination with antivenom) therapeutic agent for brown snake envenoming.


Biochimie ◽  
2021 ◽  
Vol 189 ◽  
pp. 40-50
Author(s):  
Jože Pungerčar ◽  
Franck Bihl ◽  
Gérard Lambeau ◽  
Igor Križaj
Keyword(s):  

2021 ◽  
Vol 22 (17) ◽  
pp. 9643
Author(s):  
Sébastien Larréché ◽  
Jean-Philippe Chippaux ◽  
Lucie Chevillard ◽  
Simon Mathé ◽  
Dabor Résière ◽  
...  

Toxins from Bothrops venoms targeting hemostasis are responsible for a broad range of clinical and biological syndromes including local and systemic bleeding, incoagulability, thrombotic microangiopathy and macrothrombosis. Beyond hemostais disorders, toxins are also involved in the pathogenesis of edema and in most complications such as hypovolemia, cardiovascular collapse, acute kidney injury, myonecrosis, compartmental syndrome and superinfection. These toxins can be classified as enzymatic proteins (snake venom metalloproteinases, snake venom serine proteases, phospholipases A2 and L-amino acid oxidases) and non-enzymatic proteins (desintegrins and C-type lectin proteins). Bleeding is due to a multifocal toxicity targeting vessels, platelets and coagulation factors. Vessel damage due to the degradation of basement membrane and the subsequent disruption of endothelial cell integrity under hydrostatic pressure and tangential shear stress is primarily responsible for bleeding. Hemorrhage is promoted by thrombocytopenia, platelet hypoaggregation, consumption coagulopathy and fibrin(ogen)olysis. Onset of thrombotic microangiopathy is probably due to the switch of endothelium to a prothrombotic phenotype with overexpression of tissue factor and other pro-aggregating biomarkers in association with activation of platelets and coagulation. Thrombosis involving large-caliber vessels in B. lanceolatus envenomation remains a unique entity, which exact pathophysiology remains poorly understood.


Sign in / Sign up

Export Citation Format

Share Document