sequence diversity
Recently Published Documents


TOTAL DOCUMENTS

669
(FIVE YEARS 82)

H-INDEX

62
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Michael Terence Boswell ◽  
Jamirah Nazziwa ◽  
Kimiko Kuroki ◽  
Angelica Palm ◽  
Sara Karlson ◽  
...  

Background: HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 p26 amino acid variations are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific CTL responses common in slower disease progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. We therefore aimed to determine if intrahost evolution of HIV-2 p26 is associated with disease progression. Methods: Twelve treatment-naive, HIV-2 mono-infected participants from the Guinea-Bissau Police cohort with longitudinal CD4+ T cell data and clinical follow-up were included in the analysis. CD4% change over time was analysed via linear regression models to stratify participants into relative faster and slower disease progressor groups. Gag amplicons of 735 nucleotides which spanned the p26 region were amplified by PCR and sequenced. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Amino acid polymorphisms were mapped to existing p26 protein structures. Results: In total, 369 heterochronous HIV-2 p26 sequences from 12 male patients with a median age of 30 (IQR: 28-37) years at enrolment were analysed. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (rho = -0.8, P=0.02), but not CD4% level. However, Bayes factor (BF) testing indicated that the association between evolutionary rates and CD4% kinetics was supported by weak evidence (BF=0.5). The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5 alpha/p26 hexamer interface surface. Conclusions: Faster p26 evolutionary rates were associated with faster progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate the HIV-2 p26 may be an attractive vaccine or therapeutic target.


2021 ◽  
Vol 119 (1) ◽  
pp. e2113075119
Author(s):  
Baoxing Song ◽  
Santiago Marco-Sola ◽  
Miquel Moreto ◽  
Lynn Johnson ◽  
Edward S. Buckler ◽  
...  

Millions of species are currently being sequenced, and their genomes are being compared. Many of them have more complex genomes than model systems and raise novel challenges for genome alignment. Widely used local alignment strategies often produce limited or incongruous results when applied to genomes with dispersed repeats, long indels, and highly diverse sequences. Moreover, alignment using many-to-many or reciprocal best hit approaches conflicts with well-studied patterns between species with different rounds of whole-genome duplication. Here, we introduce Anchored Wavefront alignment (AnchorWave), which performs whole-genome duplication–informed collinear anchor identification between genomes and performs base pair–resolved global alignment for collinear blocks using a two-piece affine gap cost strategy. This strategy enables AnchorWave to precisely identify multikilobase indels generated by transposable element (TE) presence/absence variants (PAVs). When aligning two maize genomes, AnchorWave successfully recalled 87% of previously reported TE PAVs. By contrast, other genome alignment tools showed low power for TE PAV recall. AnchorWave precisely aligns up to three times more of the genome as position matches or indels than the closest competitive approach when comparing diverse genomes. Moreover, AnchorWave recalls transcription factor–binding sites at a rate of 1.05- to 74.85-fold higher than other tools with significantly lower false-positive alignments. AnchorWave complements available genome alignment tools by showing obvious improvement when applied to genomes with dispersed repeats, active TEs, high sequence diversity, and whole-genome duplication variation.


Author(s):  
Damien M O’Halloran

Abstract Glutamate Gated Chloride (GluCl) channels belong to the Cys-loop receptor superfamily. GluCl channels are activated by glutamate (Glu) and form substrates for the anti-parasitic drugs from the avermectin family. GluCl channels are pentameric, and each subunit contains an N-terminal extracellular domain that binds Glu and four helical transmembrane domains (TMs), which contain binding sites for avermectin drugs. In order to provide more insight into phylum-wide patterns of GluCl subunit gene expansion and sequence diversity across nematodes, we have developed a database of predicted GluCl subunit genes from 125 nematode species. Our analysis into this dataset described assorted patterns of species-specific GluCl gene counts across different nematodes as well as sequence diversity in key residues thought to be involved in avermectin binding.


2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Karuppusamy Shanmugasundaram ◽  
Harisankar Singha ◽  
Sheetal Saini ◽  
Bhupendra N. Tripathi

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Sebastian Fischer ◽  
Jens Klockgether ◽  
Marina Gonzalez Sorribes ◽  
Marie Dorda ◽  
Lutz Wiehlmann ◽  
...  

Five hundred and thirty-four unrelated Pseudomonas aeruginosa isolates from inanimate habitats, patients with cystic fibrosis (CF) and other human infections were sequenced in 19 genes that had been identified previously as the hot spots of genomic within-host evolution in serial isolates from 12 CF lungs. Amplicon sequencing confirmed a significantly higher sequence diversity of the 19 loci in P. aeruginosa isolates from CF patients compared to those from other habitats, but this overrepresentation was mainly due to the larger share of synonymous substitutions. Correspondingly, non-synonymous substitutions were either rare (gltT, lepA, ptsP) or benign (nuoL, fleR, pelF) in some loci. Other loci, however, showed an accumulation of non-neutral coding variants. Strains from the CF habitat were often mutated at evolutionarily conserved positions in the elements of stringent response (RelA, SpoT), LPS (PagL), polyamine transport (SpuE, SpuF) and alginate biosynthesis (AlgG, AlgU). The strongest skew towards the CF lung habitat was seen for amino acid sequence variants in AlgG that clustered in the carbohydrate-binding/sugar hydrolysis domain. The master regulators of quorum sensing lasR and rhlR were frequent targets for coding variants in isolates from chronic and acute human infections. Unique variants in lasR showed strong evidence of positive selection indicated by d N/d S values of ~4. The pelA gene that encodes a multidomain enzyme involved in both the formation and dispersion of Pel biofilms carried the highest number of single-nucleotide variants among the 19 genes and was the only gene with a higher frequency of missense mutations in P. aeruginosa strains from non-CF habitats than in isolates from CF airways. PelA protein variants are widely distributed in the P. aeruginosa population. In conclusion, coding variants in a subset of the examined loci are indeed characteristic for the adaptation of P. aeruginosa to the CF airways, but for other loci the elevated mutation rate is more indicative of infections in human habitats (lasR, rhlR) or global diversifying selection (pelA).


2021 ◽  
Author(s):  
Matthew M. Hernandez ◽  
Radhika Banu ◽  
Ana S. Gonzalez-Reiche ◽  
Brandon Gray ◽  
Paras Shrestha ◽  
...  

AbstractAs severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern (VOC) have emerged. New variants pose challenges for diagnostic platforms since sequence diversity can alter primer/probe binding sites (PBS), causing false-negative results. The Agena MassARRAY® SARS-CoV-2 Panel utilizes reverse-transcription polymerase chain reaction and mass-spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we utilize a dataset of 256 SARS-CoV-2-positive specimens collected between April 11, 2021-August 28, 2021 to evaluate target performance with paired sequencing data. During this timeframe, two targets in the N gene (N2, N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3’-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk (RR): 20.02; p<0.0001; 95% Confidence Interval (CI): 11.36-35.72). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3’-mismatch to the N2 probe PBS and increases target dropout risk (RR: 11.92; p<0.0001; 95% CI: 8.17-14.06). These findings highlight the robust capability of Agena MassARRAY® SARS-CoV-2 Panel target results to reveal circulating virus diversity and underscore the power of multi-target design to capture VOC.


2021 ◽  
pp. 1-11
Author(s):  
Parveen Parasar ◽  
Bharat Bhushan ◽  
Manjit Panigrahi ◽  
Harshit Kumar ◽  
Kaiho Kaisa ◽  
...  

2021 ◽  
Vol 15 (10) ◽  
pp. e0009838
Author(s):  
John Mattick ◽  
Silvia Libro ◽  
Robin Bromley ◽  
Wanpen Chaicumpa ◽  
Matthew Chung ◽  
...  

The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.


Sign in / Sign up

Export Citation Format

Share Document