A Study of the open source framework OSGP / GXF for implementing Smart Water Metering

Author(s):  
Urja Mankad ◽  
Harshal A. Arolkar
2021 ◽  
Author(s):  
Nour Attallah ◽  
Jeffery Horsburgh ◽  
Camilo Bastidas Pacheco

<p>Water end use disaggregation aims to separate household water consumption data collected from a single residential water meter into appliance/fixture-level consumption data. In recent years, the field has rapidly expanded as the value of disaggregated data has been shown for understanding water use behavior, identifying anomalies, and identifying opportunities for conserving water. Several methods have been developed for disaggregating water end uses from high temporal resolution water use data collected using residential smart water meters. However, most existing methods have been incorporated into proprietary software tools and have been tested using datasets that are inaccessible due to privacy issues, with the result being that neither the code nor the data from these studies are available for verification or potential reuse. We describe and demonstrate a new, open source, and reproducible water end use disaggregation and classification tool that builds upon the results of existing smart water metering and end use disaggregation studies. The tool was designed and developed in Python and can be accessed via any current Python programming environment. It was tested on anonymized, high temporal resolution datasets collected from 31 residential dwellings located in the Cities of Logan and Providence, Utah, USA for a period of one month. Results from different meter types and sizes were tested to demonstrate the accuracy and reproducibility of the tool in disaggregating and classifying high temporal resolution data into individual water end use events. Execution of the tool requires approximately one minute for processing one-day of data collected at a four second time interval for one dwelling. The disaggregation tool is open source and can be adapted to specific research needs. The anonymized dataset we used to develop and test the tool is openly available in the HydroShare data repository.</p>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


2021 ◽  
Vol 11 (13) ◽  
pp. 6086
Author(s):  
Nils Ellendt ◽  
Fabian Fabricius ◽  
Anastasiya Toenjes

Additive manufacturing processes offer high geometric flexibility and allow the use of new alloy concepts due to high cooling rates. For each new material, parameter studies have to be performed to find process parameters that minimize microstructural defects such as pores or cracks. In this paper, we present a system developed in Python for accelerated image analysis of optical microscopy images. Batch processing can be used to quickly analyze large image sets with respect to pore size distribution, defect type, contribution of defect type to total porosity, and shape accuracy of printed samples. The open-source software is independent of the microscope used and is freely available for use. This framework allows us to perform such an analysis on a circular area with a diameter of 5 mm within 10 s, allowing detailed process maps to be obtained for new materials within minutes after preparation.


Author(s):  
Marco Langiu ◽  
David Yang Shu ◽  
Florian Joseph Baader ◽  
Dominik Hering ◽  
Uwe Bau ◽  
...  

2008 ◽  
Vol 24 (18) ◽  
pp. 2096-2097 ◽  
Author(s):  
R. C. G. Holland ◽  
T. A. Down ◽  
M. Pocock ◽  
A. Prlic ◽  
D. Huen ◽  
...  

2021 ◽  
Author(s):  
Jason Anderson ◽  
Rami Beidas ◽  
Vimal Chacko ◽  
Hsuan Hsiao ◽  
Xiaoyi Ling ◽  
...  

2010 ◽  
Vol 32 (3) ◽  
pp. 298-312 ◽  
Author(s):  
Boris Houska ◽  
Hans Joachim Ferreau ◽  
Moritz Diehl

Sign in / Sign up

Export Citation Format

Share Document