scholarly journals PoreAnalyzer—An Open-Source Framework for the Analysis and Classification of Defects in Additive Manufacturing

2021 ◽  
Vol 11 (13) ◽  
pp. 6086
Author(s):  
Nils Ellendt ◽  
Fabian Fabricius ◽  
Anastasiya Toenjes

Additive manufacturing processes offer high geometric flexibility and allow the use of new alloy concepts due to high cooling rates. For each new material, parameter studies have to be performed to find process parameters that minimize microstructural defects such as pores or cracks. In this paper, we present a system developed in Python for accelerated image analysis of optical microscopy images. Batch processing can be used to quickly analyze large image sets with respect to pore size distribution, defect type, contribution of defect type to total porosity, and shape accuracy of printed samples. The open-source software is independent of the microscope used and is freely available for use. This framework allows us to perform such an analysis on a circular area with a diameter of 5 mm within 10 s, allowing detailed process maps to be obtained for new materials within minutes after preparation.

Author(s):  
Panagiotis Vogiatzis ◽  
Shikui Chen ◽  
Chi Zhou

Topology optimization has been considered as a promising tool for conceptual design due to its capability of generating innovative design candidates without depending on the designer's intuition and experience. Various optimization methods have been developed through the years, and one of the promising options is the level-set-based topology optimization method. The benefit of this alternative method is that the design is characterized by its clear boundaries. This advantage can avoid postprocessing work in conventional topology optimization process to a large extent and realize direct integration between topology optimization and additive manufacturing (AM). In this paper, practical algorithms and a matlab-based open source framework are developed to seamlessly integrate the level-set-based topology optimization procedure with AM process by converting the design to STereoLithography (STL) files, which is the de facto standard format for three-dimensional (3D) printing. The proposed algorithm and code are evaluated by a proof-of-concept demonstration with 3D printing of both single and multimaterial topology optimization results. The algorithm and the open source framework proposed in this paper will be beneficial to the areas of computational design and AM.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


Author(s):  
Marco Langiu ◽  
David Yang Shu ◽  
Florian Joseph Baader ◽  
Dominik Hering ◽  
Uwe Bau ◽  
...  

2008 ◽  
Vol 24 (18) ◽  
pp. 2096-2097 ◽  
Author(s):  
R. C. G. Holland ◽  
T. A. Down ◽  
M. Pocock ◽  
A. Prlic ◽  
D. Huen ◽  
...  

2021 ◽  
Author(s):  
Jason Anderson ◽  
Rami Beidas ◽  
Vimal Chacko ◽  
Hsuan Hsiao ◽  
Xiaoyi Ling ◽  
...  

2015 ◽  
Vol 87 (1) ◽  
pp. 15-27 ◽  
Author(s):  
José D. Ferreira ◽  
Martín Zamorano ◽  
Ana Maria Ribeiro

The genus Panochthus represents the last lineage of "Panochthini" recorded in the Pleistocene. This genus has a wide latitudinal distribution in South America, and in Brazil it occurs in the southern and northeastern regions. In this paper we describe new material (isolated osteoderms and caudal tube fragments) assigned to Panochthus from the state of Rio Grande do Sul (southern Brazil) and discuss some taxonomic issues related to Panochthus tuberculatus and Panochthus greslebini based on this material . The occurrence of P. greslebini is the first for outside the Brazilian Intertropical Region. In addition, we describe new diagnostic features to differentiate the osteoderms of P. greslebini and P. tuberculatus. Unfortunately, it was not possible to identify some osteoderms at the species level. Interestingly, they showed four distinct morphotypes characterized by their external morphology, and thus were attributed to Panochthus sp. Lastly, we conclude that in addition to P.tuberculatus registered to southern Brazil, there is another species of the genus, assignable to P. cf. P. greslebini. Our analysis reinforce the reliability of caudal tube characters for the classification of species of Panochthus.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 78 ◽  
Author(s):  
Aubrey Woern ◽  
Joshua Pearce

Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF as well as indirectly after being converted into high-tolerance filament in a recyclebot.


2010 ◽  
Vol 32 (3) ◽  
pp. 298-312 ◽  
Author(s):  
Boris Houska ◽  
Hans Joachim Ferreau ◽  
Moritz Diehl

Sign in / Sign up

Export Citation Format

Share Document