Simulation and optimization of energy efficient operation of HVAC system as demand response with distributed energy resources

Author(s):  
Young M. Lee ◽  
Raya Horesh ◽  
Leo Liberti
Author(s):  
Monika Gaba ◽  
Saurabh Chanana

Abstract Demand response (DR), an integral part of the smart grid, has great potential in handling the challenges of the existing power grid. The potential of different DR programs in the energy management of residential consumers (RCs) and the integration of distributed energy resources (DERs) is an important research topic. A novel distributed approach for energy management of RCs considering the competitive interactions among them is presented in this paper. The impact of participation of RC’s in price-based (PB) and incentive-based (IB) DR programs is investigated using game theory. For this, an energy management optimization problem (EMOP) is formulated to minimize electricity cost. The utility company employs electricity price as a linear function of aggregated load in the PB DR program and an incentive rate in the IBDR program. RCs are categorized into active and passive users. Active users are further distinguished based on the ownership of energy storage devices (SD) and dispatchable generation units (DGU). EMOP is modeled using a non-cooperative game, and the distributed proximal decomposition method is used to obtain the Nash equilibrium of the game. The results of the proposed approach are analyzed using different case studies. The performance of the proposed approach is evaluated in terms of aggregated cost and system load profile. It has been observed that participation in PB and IBDR program benefits both the utility and the consumers.


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 50 ◽  
Author(s):  
Maroufmashat ◽  
Taqvi ◽  
Miragha ◽  
Fowler ◽  
Elkamel

: The concept of energy hubs has grown in prominence as a part of future energy systems, driven by the spread of Distributed Energy Resources (DERs) and the inception of the smart grid. This paper systematically reviews 200 articles about energy hubs, published from 2007 to 2017, and summarizes them based on their modeling approach, planning and operation, economic and environmental considerations, and energy hub applications. The common applications of energy hubs are considered, such as distributed energy resources, the consideration of Plug-in Hybrid Electric Vehicles (PHEVs), and the hydrogen economy. This paper examines modeling approaches towards energy hubs, including storage and its network models; it mentions some of the optimization strategies used to tackle the efficient operation and control of energy hubs. The novelty of this work lies in the classification of research papers related to energy hubs, the development of a generic framework for modeling these multiple energy flow carriers with storage and network considerations, and the provision of solution techniques in line with energy hub optimization.


Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 710-718 ◽  
Author(s):  
Carlos Roldán-Blay ◽  
Guillermo Escrivá-Escrivá ◽  
Carlos Roldán-Porta

Sign in / Sign up

Export Citation Format

Share Document