scholarly journals The effects of tropical secondary forest regeneration on avian phylogenetic diversity

2020 ◽  
Vol 57 (7) ◽  
pp. 1351-1362 ◽  
Author(s):  
Emma C. Hughes ◽  
David P. Edwards ◽  
Catherine A. Sayer ◽  
Philip A. Martin ◽  
Gavin H. Thomas
2017 ◽  
Vol 209 ◽  
pp. 432-439 ◽  
Author(s):  
David P. Edwards ◽  
Michael R. Massam ◽  
Torbjørn Haugaasen ◽  
James J. Gilroy

Human Ecology ◽  
2021 ◽  
Author(s):  
Adam Pain ◽  
Kristina Marquardt ◽  
Dil Khatri

AbstractWe provide an analytical contrast of the dynamics of secondary forest regeneration in Nepal and Peru framed by a set of common themes: land access, boundaries, territories, and rights, seemingly more secure in Nepal than Peru; processes of agrarian change and their consequences for forest-agriculture interactions and the role of secondary forest in the landscape, more marked in Peru, where San Martín is experiencing apparent agricultural intensification, than in Nepal; and finally processes of social differentiation that have consequences for different social groups, livelihood construction and their engagement with trees, common to both countries. These themes address the broader issue of the necessary conditions for secondary forest regeneration and the extent to which the rights and livelihood benefits of those actively managing it are secured.


2005 ◽  
Vol 5 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Rodolfo Salm ◽  
Euphly Jalles-Filho ◽  
Cynthia Schuck-Paim

In this study we propose a model that represents the importance of large arborescent palms in the dynamics of seasonally-dry Amazonian forests. Specifically, the model is aimed at guiding the investigation of the role of large arborescent palms on forest regeneration and succession. Following disturbance, the high level of luminosity reaching recently formed forest gaps favors the quick proliferation of shade-intolerant lianas that, by casting shade on the crowns of mature forest trees and increasing tree-fall probability, suppress forest succession. Due to their columnar architecture palm trees are, however, not severely affected by vines. As the palms grow, the canopy at the gaps becomes gradually higher and denser, progressively obstructing the passage of light, thus hindering the growth of shade-intolerant lianas and enabling late-successional tree development and forest regeneration. Owing to the long time associated with forest regeneration, the model cannot be tested directly, but aspects of it were examined with field data collected at an Attalea maripa-rich secondary forest patch within a matrix of well-preserved seasonally-dry forest in the Southeastern Amazon. The results indicate that (1) forest disturbance is important for the recruitment of large arborescent palms species, (2) these palms can grow rapidly after an event of disturbance, restoring forest canopy height and density, and (3) secondary forest dominated by palm trees species may be floristically similar to nearby undisturbed forests, supporting the hypothesis that the former has undergone regeneration, as purported in the model.


2016 ◽  
Vol 19 (6) ◽  
pp. 548-560 ◽  
Author(s):  
E. W. Basham ◽  
P. González del Pliego ◽  
A. R. Acosta-Galvis ◽  
P. Woodcock ◽  
C. A. Medina Uribe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document