scholarly journals A model for the importance of large arborescent palms in the dynamics of seasonally-dry amazonian forests

2005 ◽  
Vol 5 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Rodolfo Salm ◽  
Euphly Jalles-Filho ◽  
Cynthia Schuck-Paim

In this study we propose a model that represents the importance of large arborescent palms in the dynamics of seasonally-dry Amazonian forests. Specifically, the model is aimed at guiding the investigation of the role of large arborescent palms on forest regeneration and succession. Following disturbance, the high level of luminosity reaching recently formed forest gaps favors the quick proliferation of shade-intolerant lianas that, by casting shade on the crowns of mature forest trees and increasing tree-fall probability, suppress forest succession. Due to their columnar architecture palm trees are, however, not severely affected by vines. As the palms grow, the canopy at the gaps becomes gradually higher and denser, progressively obstructing the passage of light, thus hindering the growth of shade-intolerant lianas and enabling late-successional tree development and forest regeneration. Owing to the long time associated with forest regeneration, the model cannot be tested directly, but aspects of it were examined with field data collected at an Attalea maripa-rich secondary forest patch within a matrix of well-preserved seasonally-dry forest in the Southeastern Amazon. The results indicate that (1) forest disturbance is important for the recruitment of large arborescent palms species, (2) these palms can grow rapidly after an event of disturbance, restoring forest canopy height and density, and (3) secondary forest dominated by palm trees species may be floristically similar to nearby undisturbed forests, supporting the hypothesis that the former has undergone regeneration, as purported in the model.

2009 ◽  
Vol 25 (5) ◽  
pp. 473-482 ◽  
Author(s):  
Renato Valencia ◽  
Richard Condit ◽  
Helene C. Muller-Landau ◽  
Consuelo Hernandez ◽  
Hugo Navarrete

Abstract:Above-ground biomass (AGB) is increasing in most of the Amazon forests. One hypothesis is that forests are responding to widespread and intense human intervention prior to the European conquest (>500 y ago). In this study we confront this hypothesis with changes in AGB over 6.3 y in a large western Amazonian forest plot (>150 000 shrubs and trees and 1100 species with dbh ≥ 10 mm in 25 ha). We examined AGB flux in different habitats and across diameter classes. The forest lost small stems (4.6%), gained large trees (2.6%), and gained biomass (0.7%). The change in AGB stock was due entirely to this upward shift in size leading to more canopy trees and fewer saplings after just 6 y. Across habitats, the biggest increment in biomass was in the secondary-forest patch (3.4% y−1) which we know was cleared about 27 y ago, whereas mature forest on ridges and valleys had small increases (0.10% and 0.09% y−1, respectively). In both censuses, AGB stocks were >50% higher on the ridge than in the valley while relative growth and mortality were higher in the valley. Mean wood specific gravity (WSG) decreased with increasing diameter class; WSG did not change much between censuses in mature forests and did not contribute to the change in AGB stocks. Our forest increased its standing biomass, but far less than the average reported for other Amazonian forests (i.e. 0.30 vs. 0.98 Mg ha−1 y−1). We find no evidence to support the notion that this forest is recovering from long-past human intervention. Instead of a long-term recovery, we believe the forest changed in response to natural fluctuations of the environment (e.g. changes in precipitation, higher CO2), windstorms or other more recent events. The significant differences in AGB stocks between valley and ridge suggest that the terra firme forests are a mosaic of natural habitats, and that this mosaic is in part responsible for the variation in biomass stocks detected in Amazonian terra firme forests.Resumen: La biomasa aérea de la mayoría de los bosques amazónicos está incrementando. Una hipótesis es que los bosques están respondiendo a un disturbio humano intenso y ampliamente distribuido, anterior a la llegada de los conquistadores europeos (>500 años atrás). En este estudio se confronta esta hipótesis con los cambios en biomasa encontrados en 6.3 años en una parcela de gran escala de la Amazonia occidental (>150.000 arbustos y árboles con diámetro a la altura del pecho ≥10 mm y 1100 especies en 25 ha). Los resultados se examinan por categorías de diámetro y hábitat. En este período el bosque perdió tallos pequeños (4.6%), ganó árboles grandes (2.6%) y ganó biomasa (0.7%). La ganancia en biomasa fue debida enteramente al incremento de árboles de gran tamaño que significó más árboles de dosel y menos juveniles en apenas 6 años. Entre los hábitats, el mayor incremento en biomasa se encontró en un parche de bosque secundario de colina (3.4%/año), cuya edad es de 27 años, mientras el bosque maduro de las colinas y los valles incrementó escasamente (0.10% y 0.09%/año, respectivamente). Tanto al inicio como al final del estudio, el stock de biomasa fue >50% más grande en la colina que en el valle mientras que el crecimiento y la mortalidad relativa fueron mayores en el valle. La media de la gravedad específica de la madera (GEM) fue menor a mayor clase diamétrica; en el bosque maduro, el cambio en la GEM fue insignificante y no contribuyó al aumento en stocks de biomasa. El bosque incrementó la biomasa aérea pero mucho menos que el promedio reportado para otros bosques amazónicos (i.e. 0.30 vs. 0.98 Mg ha−1/año). No se encontró evidencia que apoye la noción de que el bosque se está recuperando de un disturbio de gran escala ocurrido en el pasado. En su lugar, se cree que el bosque cambió en respuesta a fluctuaciones naturales del ambiente (e.g. cambios en precipitación, mayor concentración de CO2), vendavales u otro tipo de eventos más recientes. La diferencia significativa en los stocks de biomasa encontrada entre el valle y la colina sugiere que la tierra firme es un mosaico de hábitats naturales y que este mosaico podría explicar en parte la variación encontrada en los stocks de biomasa de bosques amazónicos de tierra firme.


Author(s):  
Jaime Hernández‐Flores ◽  
Alejandro Flores‐Palacios ◽  
Miguel Vásquez‐Bolaños ◽  
Víctor Hugo Toledo‐Hernández ◽  
Ofelia Sotelo‐Caro ◽  
...  

2002 ◽  
Vol 32 (2) ◽  
pp. 241-241
Author(s):  
Akio TSUCHIYA ◽  
Yoshihiko HIRABUKI ◽  
Toshie NISHIZAWA ◽  
Pedro Braga LISBOA ◽  
Carlos Rosário da SILVA

In order to compare the development of strata in the early stages of secondary forest succession with vessel parameters of the tree species, a forest inventory was carried out in 4-year (Q1: 48 m2), 11-year (Q2: 400 m2) and 20-year (Q3: 400 m2) forests and vessel parameters were investigated from stem cross sections of 18 species obtained in Q2. Thirty three species (21 families), 77 species (35 families), 39 species (20 families) were found in Ql, Q2, Q3, respectively. The percentage of dead individuals, dead stems and the percentage of individuals with multiple stems increased with time after clear cutting. Also, the total D2H of Q3 was 26.1 times that of Q1, and the development of strata started in Q2 and Q3. The image analysis of vessel size, area and number of vessels revealed that species which reach the forest canopy had a large D2H value, vessel diameter and area, while species which remain near the forest floor had smaller ones. Poecilanthe effusa (Huber) Ducke is an example of the latter case, with a large number of individuals and abundant sprouting of new stems from stumps, but with high mortality.


2016 ◽  
Vol 76 (1) ◽  
pp. 169-175 ◽  
Author(s):  
D. M. Arruda ◽  
P. V. Eisenlohr

Abstract Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.


2009 ◽  
Vol 5 (1) ◽  
pp. 153-202 ◽  
Author(s):  
J. Lebamba ◽  
A. Ngomanda ◽  
A. Vincens ◽  
D. Jolly ◽  
C. Favier ◽  
...  

Abstract. New detailed vegetation reconstructions are proposed in Atlantic Central Africa from a modern pollen data set derived from 199 sites (Cameroon, Gabon and Congo) including 131 new sites. In this study, the concept of plant functional classification is improved with new and more detailed plant functional types (PFTs) and new aggregations of pollen taxa. Using the biomisation method, we reconstructed (1) modern potential biomes and (2) potential succession stages of forest regeneration, a new approach in Atlantic Central African vegetation dynamics and ecosystem functioning reconstruction. When compared to local vegetation, potential biomes are correctly reconstructed (97.5% of the sites) and tropical evergreen to semi-evergreen forest (TRFO biome) is well identified from semi-deciduous forest (TSFO biome). When the potential biomes are superimposed on the White's vegetation map, only 76.4% of the sites are correctly reconstructed. But using botanical data, correspondence and cluster analyses, the 43 sites from Congo (Mayombe) evidence more affinities with those of central Gabon and so they can also be considered as correctly reconstructed as TRFO biome and White's map must be revised. In terms of potential succession stages of forest regeneration, the mature forest (TMFO) is well differentiated from the secondary forest (TSFE), but inside this latter group, the young and the pioneer stages are not clearly identified due probably to their low sampling representation. Moreover, linked to their progressive and mosaic character, the boundaries between two forest biomes or two forest stages are not clearly detected and need also a more intensive sampling in such transitions.


2009 ◽  
Vol 5 (3) ◽  
pp. 403-429 ◽  
Author(s):  
J. Lebamba ◽  
A. Ngomanda ◽  
A. Vincens ◽  
D. Jolly ◽  
C. Favier ◽  
...  

Abstract. New detailed vegetation reconstructions are proposed in Atlantic Central Africa from a modern pollen data set derived from 199 sites (Cameroon, Gabon and Congo) including 131 new sites. In this study, the concept of plant functional classification is improved with new and more detailed plant functional types (PFTs) and new aggregations of pollen taxa. Using the biomisation method, we reconstructed (1) modern potential biomes and (2) potential succession stages of forest regeneration, a new approach in Atlantic Central African vegetation dynamics and ecosystem functioning reconstruction. When compared to local vegetation, potential biomes are correctly reconstructed (97.5% of the sites) and tropical rain forest (TRFO biome) is well identified from tropical seasonal forest (TSFO biome). When the potential biomes are superimposed on the White's vegetation map, only 76.4% of the sites are correctly reconstructed. But using botanical data, correspondence and cluster analyses, the 43 sites from Congo (Mayombe) evidence more affinities with those of central Gabon and so they can also be considered as correctly reconstructed as TRFO biome and White's map should be revised. In terms of potential succession stages of forest regeneration, the mature forest (TMFO) is well differentiated from the secondary forest (TSFE), but inside this latter group, the young and the pioneer stages are not clearly identified due probably to their low sampling representation. Moreover, linked to their progressive and mosaic character, the boundaries between two forest biomes or two forest stages are not clearly detected and need also a more intensive sampling in such transitions.


2004 ◽  
Vol 155 (3-4) ◽  
pp. 80-88 ◽  
Author(s):  
Klaus Ackermann

Wild growing yams (Dioscorea spp.) are an important supplementary food in Madagascar, especially during periods of rice shortage in the rainy season. Yams grow in dry forests and there is a particularly high occurrence of yam tubers in recently burned, open secondary forest formations. The study found that the uncontrolled harvest of yams can contribute to the degradation of dry forests due to the high quantity of wild yams harvested by the local population and the widespread practice of intentionally burning forests to increase yams production.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 593
Author(s):  
Janet E. Nichol ◽  
Sawaid Abbas

Global trends predict a continuous increase in the proportion of forest occupied by plantations up to the end of the 21st century, while a dramatic loss of biodiversity is foreseen as a result of anthropogenic exploitation and climate change. This study compares the role and performance of plantation policies in Hong Kong, with natural regeneration of secondary forest, using detailed spatio-temporal data extracted from a previous study. The study extends over a 70-year period from 1945 to 2014 using aerial photographs and satellite images of five time periods to document spatio-temporal trends in plantation forestry and natural forest succession. Field data on species richness and woody biomass at different stages of forest succession are compared with available data from plantations in the same study area. Results indicate that plantation forests support relatively few native species in the understory, with much lower species richness than naturally regenerated forest, even after 6 to 7 decades. Time-sequential maps of habitat change show that natural forest succession from barren grassy hillsides, progressed at an annual rate of 7.8%, from only 0.2% of the landscape post WWII, to over 37% today. Plantation forestry on the other hand has been less successful, and has even acted as a barrier to natural forest regeneration, as mono-cultural plantations from the late 1960s to 1980s are still plantations today, whereas other similar areas have succeeded naturally to forest. The theory of plantations acting as a nurse crop for a woody native understory is not supported, as Pinus massoniana plantations, destroyed by two deadly nematodes during the 1970s, apparently had no woody understory, as they were seen to have reverted to grassland in 1989 and are still mainly grassland today.


2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


Human Ecology ◽  
2021 ◽  
Author(s):  
Adam Pain ◽  
Kristina Marquardt ◽  
Dil Khatri

AbstractWe provide an analytical contrast of the dynamics of secondary forest regeneration in Nepal and Peru framed by a set of common themes: land access, boundaries, territories, and rights, seemingly more secure in Nepal than Peru; processes of agrarian change and their consequences for forest-agriculture interactions and the role of secondary forest in the landscape, more marked in Peru, where San Martín is experiencing apparent agricultural intensification, than in Nepal; and finally processes of social differentiation that have consequences for different social groups, livelihood construction and their engagement with trees, common to both countries. These themes address the broader issue of the necessary conditions for secondary forest regeneration and the extent to which the rights and livelihood benefits of those actively managing it are secured.


Sign in / Sign up

Export Citation Format

Share Document