Early Cenozoic Tectonics of the Tibetan Plateau

2013 ◽  
Vol 87 (2) ◽  
pp. 289-303 ◽  
Author(s):  
WU Zhenhan ◽  
HU Daogong ◽  
YE Peisheng ◽  
WU Zhonghai
2020 ◽  
Author(s):  
Katharine Groves ◽  
Mark Allen ◽  
Christopher Saville ◽  
Martin Hurst ◽  
Stuart Jones

<p>The formation and uplift history of the Tibetan Plateau, driven by the India-Eurasia collision, is the subject of intense research. Geomorphic indices capture the landscape response to competition between climate and tectonics and reflect the spatial distribution of erosion. We analyse the link between climate and tectonics in the eastern part of the Tibetan Plateau using the mean annual precipitation, digital elevation data, and by calculating the geomorphic indices hypsometric integral (HI), surface roughness (SR) and elevation relief ratio (ZR). This is a region where competing tectonic models suggest either early Cenozoic plateau growth, or a late phase of crustal thickening, surface uplift and plateau growth driven by lower crustal flow (“channel flow”).</p><p>Swath profiles of rainfall, elevation and the geomorphic indices were constructed, orthogonal to the internal drainage boundary. Each profile was analysed to find the location of maximum change in trend. A broad transition zone is present in the landscape, where changes in landscape and precipitation are grouped and in alignment. The zone cuts across structural boundaries. It represents, from East to West, a sharp decline in precipitation below ~650 mm/yr (interpreted as the western extent of the East Asian monsoon), a change from a high relief landscape to smoother elevations at 4500-5000 m, a transition to low HI (< 0.05), a decrease in SR and an increase in ZR. This zone is not a drainage divide: the main rivers have their headwaters further West, in the interior of the plateau.</p><p>We argue that this geomorphic-climatic transition zone represents a change from incised to non-incised landscapes, the location of which is controlled by the western extent of the monsoon. Published low temperature thermochronology data suggest the plateau had reached its modern extent at the Eocene, but has been exhumed since ~15 Ma to the East of the transition zone, at least along major drainage networks. We therefore also suggest that the transition zone is the current position of a long-term wave of incision that has migrated from East to West, driven by late Cenozoic intensification of the monsoon climate. This work supports a model of early Cenozoic growth of the eastern Tibetan Plateau, superimposed by incision driven by climate change; it does not support the channel flow model.</p>


2021 ◽  
Author(s):  
Katharine Groves ◽  
Mark Allen ◽  
Christopher Saville ◽  
Martin Hurst ◽  
Stuart Jones

<p>The formation and uplift history of the Tibetan Plateau, driven by the India-Eurasia collision, is the subject of intense research. We analyse the link between climate and tectonics in the central and eastern Tibetan Plateau using geomorphic indices of surface roughness (SR) hypsometric integral (HI) and elevation-relief ratio (ZR) and mean annual precipitation, thermochronology and erosion rate data. Geomorphic indices capture the landscape response to competition between climate and tectonics and reflect the spatial distribution of erosion. This is a region where competing tectonic models suggest either early Cenozoic plateau growth, or a late phase of crustal thickening, surface uplift and plateau growth driven by lower crustal flow (“channel flow”). Swath profiles of rainfall, elevation and the geomorphic indices were constructed, orthogonal to the internal drainage boundary. Each profile was analysed to find the location of maximum change in trend. We identify a broad ˜WSW-ENE trending transition in the landscape where changes in landscape and precipitation are grouped and in alignment. It represents, from east to west, a sharp decline in precipitation (interpreted as the western extent of the East Asian monsoon), a change to a low relief landscape at 4500-5000 m elevation, an increase in ZR and a transition to low HI and SR. This zone cuts across structural boundaries and is not a drainage divide: the main rivers have their headwaters further West, in the interior of the plateau. We argue that this geomorphic-climatic transition zone represents a change from incised to non-incised landscapes, the location of which is controlled by the western extent of the monsoon. Modern erosion rates are lower in the non-incised region, west of the monsoon extent (mean 0.02 mm/yr), than the incised region (mean 0.26 mm/yr). Compiled thermochronology data shows an increase in exhumation from ˜25 Ma in the incised area but no evidence of this increased exhumation in the non-incised area. This pattern supports a model of early Cenozoic growth of the eastern Tibetan Plateau, superimposed by incision driven by Miocene monsoon intensification. Our results do not support the channel flow model, which would predict an eastwards wave of surface uplift and therefore erosion and exhumation during the Miocene, which are not present in the data.</p>


2001 ◽  
Vol 343 (1-2) ◽  
pp. 111-134 ◽  
Author(s):  
M Jolivet ◽  
M Brunel ◽  
D Seward ◽  
Z Xu ◽  
J Yang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenhan Wu ◽  
Peisheng Ye ◽  
Patrick J. Barosh ◽  
Daogong Hu ◽  
Lu Lu

Recently completed regional geological mapping at a scale of 1 : 250,000 or larger across all of the Tibetan Plateau coupled with deep seismic surveys reveals for the first time a comprehensive depiction of the major early Cenozoic thrust systems resulting from the northward subduction of the Indian Continental Plate. These systems define a series of overlapping north-dipping thrust sheets that thickened the Tibetan crust and lead to the rise of the plateau. The few south-dipping thrusts present apparently developed within a sheet when the back moved faster than the toe. Many of the thrusts are shown to extend to the middle-lower crustal depths by seismic data. The regional thrust systems are the Main Central, Renbu-Zedong, Gangdese, Central Gangdese, North Gangdese, Bangoin-Nujiang, Qiangtang, Hohxil, and South Kunlun Thrusts. The minimal southward displacements of the South Kunlun, Hohxil, South Qiangtang, and Central Gangdese Thrusts are estimated to be 30 km, 25 km, 150 km and 50 km, respectively. Deep thrusting began in the Himalaya-Tibetan region soon after India-Eurasia continental collision and led to crustal thickening and subsequent uplift of the Tibetan Plateau during Late Eocene-Early Miocene when the systems were mainly active. The major thrust systems ceased moving in Early Miocene and many were soon covered by lacustrine strata. This activity succeeded in the late Cenozoic to crustal extension and strike-slip movement in the central Tibetan Plateau. The revelation of the full array of the early Cenozoic thrust systems provides a much more complete understanding of the tectonic framework of the Tibetan Plateau.


Geosphere ◽  
2021 ◽  
Author(s):  
Chen Wu ◽  
Jie Li ◽  
Lin Ding

Signals of uplift and deformation across the Tibetan Plateau associated with the Cenozoic India-Asia collision can be used to test debated deformation mechanism(s) and the growth history of the plateau. The spatio-temporal evolution of the Eastern Kunlun Range in northern Tibet provides a window for understanding the intracontinental tectonic evolution of the region. The Eastern Kunlun Range exposes the Cenozoic Kunlun left-slip fault and kinematically linked thrust belts. In this contribution, integrated field observations and apatite fission-track thermochronology were conducted to constrain the initiation ages of localized thrust faults and the exhumation history of the Eastern Kunlun Range. Our analyses reveal four stages of cooling of the Eastern Kunlun Range. We relate these four stages to the following interpreted tectonic evolution: (1) an initial period of early Cretaceous cooling and slow exhumation over the early Cenozoic, which is associated with the formation of a regional unconformity observed between Cretaceous strata and early Cenozoic sediments; (2) rapid Oligocene cooling that occurred at the eastern domain of the Eastern Kunlun Range related to the southern Qaidam thrusts; (3) extensive rapid cooling since the early-middle Miocene in most of the eastern-central domains and significant uplift of the entire range; and (4) a final pulse of rapid late Miocene-to-present cooling associated with the initiation of the Kunlun left-slip fault and dip-slip shortening at the western and eastern termination of the left-slip fault. Early Cenozoic deformation was distributed along the northern extent of the Tibetan Plateau, and overprinting out-of-sequence deformation migrated back to the south with the initiation of Miocene-to-present deformation in the Eastern Kunlun Range.


Sign in / Sign up

Export Citation Format

Share Document