continental lithosphere
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 120)

H-INDEX

82
(FIVE YEARS 7)

Author(s):  
Gillian R. Foulger ◽  
Laurent Gernigon ◽  
Laurent Geoffroy

ABSTRACT We propose a new, sunken continent beneath the North Atlantic Ocean that we name Icelandia. It may comprise blocks of full-thickness continental lithosphere or extended, magma-inflated continental layers that form hybrid continental-oceanic lithosphere. It underlies the Greenland-Iceland-Faroe Ridge and the Jan Mayen microplate complex, covering an area of ~600,000 km2. It is contiguous with the Faroe Plateau and known parts of the submarine continental rifted margin offshore Britain. If these are included in a “Greater Icelandia,” the entire area is ~1,000,000 km2 in size. The existence of Icelandia needs to be tested. Candidate approaches include magnetotelluric surveying in Iceland; ultralong, full-crust-penetrating reflection profiling along the length of the Greenland-Iceland-Faroe Ridge; dating zircons collected in Iceland; deep drilling; and reappraisal of the geology of Iceland. Some of these methods could be applied to other candidate sunken continents that are common in the oceans.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012006
Author(s):  
A G Kirdyashkin ◽  
A A Kirdyashkin ◽  
A V Borodin ◽  
V S Kolmakov

Abstract Temperature distribution in the upper mantle underneath the continent, as well as temperature distribution in the lower mantle, is obtained. In the continental lithosphere, the solution to the heat transfer equation is obtained in the model of conduction heat transfer with inner heat within the crust. To calculate the temperature distribution in the upper and lower mantle, we use the results of laboratory and theoretical modeling of free convective heat transfer in a horizontal layer heated from below and cooled from above.


2021 ◽  
Author(s):  
◽  
Katharine Emma Saunders

<p>The petrogenesis of silicic arc magmas is controversial with end-member models of fractional crystallisation and crustal anatexis having been invoked. A prime example of this is the archetypical continental Taupo Volcanic Zone and the adjacent oceanic Kermadec Arc. Insights into the genesis and timescales of magmatic processes of four continental rhyolitic magmas (Whakamaru, Oruanui, Taupo and Rotorua eruptives) and an oceanic (Healy seamount) rhyodacitic magma are documented through micro-analytical chemical studies of melt inclusions and crystal zonation of plagioclase and quartz. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy have been used to measure major, trace and volatile element concentrations, respectively, of melt inclusions and crystals. Melt inclusions are high silica (e.g. 74 - 79 wt%) irrespective of arc setting and display a wide range of trace element compositions (e.g. Sr = 17 - 180 ppm). Taupo Volcanic Zone melt inclusions exhibit higher K2O and Ce/Yb relative to Healy melt inclusions reflecting the assimilation of continental lithosphere. Quantitative trace element modelling of melt inclusion compositions: (a) demonstrates that magma genesis occurred through 62 - 76% fractional crystallisation at Healy whereas assimilation of continental lithosphere (greywacke) in addition to 60 - 80% fractional crystallisation is required for the Taupo Volcanic Zone magmas; and (b) suggests the presence of crystal mush bodies beneath silicic magma chambers in both continental and oceanic arc environments. Water concentrations of melt inclusions ranged between 1.4 - 5.1 wt% for the Whakamaru, Taupo and Healy samples. However, the inconsistency in the measured molecular water to hydroxyl concentrations of melt inclusions relative to those determined experimentally for groundmass rhyolitic glasses provide evidence for the degassing of inclusions prior to quenching, by diffusion of hydroxyl groups through the crystal host. Thus, partial pressures of water estimated from the inclusions and inferred depths of the crystallising magma bodies are underestimated. Chemical profiles of mineral zonation, however, indicate a more complex origin of silicic melts than simple fractionation and assimilation. For example, trace element modelling of Whakamaru plagioclase suggests that the three distinct textural plagioclase populations present in Whakamaru samples crystallised from four physiochemically discrete silicic melts. This modelling indicates a strong petrogenetic link between andesitic and silicic magmas from the chemical variation of selected Whakamaru plagioclase crystals possessing high anorthite (45-60 mol %) cores and low anorthite (~ 30 mol %) rim compositions and the interaction of greywacke partial melts. Furthermore, Sr diffusion modelling of core-rim interfaces of the same plagioclase crystals indicate the amalgamation of the magma chamber occurred continuously over the 15,000 years preceding the climactic eruption. Conversely, the major element zonation of Taupo plagioclases implies magma genesis occurred solely through assimilation and fractional crystallisation without the incorporation of evolved crystal mush magmas, indicating a spectrum of magmatic processes are occurring beneath the Taupo Volcanic Zone with each eruption providing only a snapshot of the petrogenesis of the Taupo Volcanic Zone.</p>


2021 ◽  
Author(s):  
◽  
Katharine Emma Saunders

<p>The petrogenesis of silicic arc magmas is controversial with end-member models of fractional crystallisation and crustal anatexis having been invoked. A prime example of this is the archetypical continental Taupo Volcanic Zone and the adjacent oceanic Kermadec Arc. Insights into the genesis and timescales of magmatic processes of four continental rhyolitic magmas (Whakamaru, Oruanui, Taupo and Rotorua eruptives) and an oceanic (Healy seamount) rhyodacitic magma are documented through micro-analytical chemical studies of melt inclusions and crystal zonation of plagioclase and quartz. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy have been used to measure major, trace and volatile element concentrations, respectively, of melt inclusions and crystals. Melt inclusions are high silica (e.g. 74 - 79 wt%) irrespective of arc setting and display a wide range of trace element compositions (e.g. Sr = 17 - 180 ppm). Taupo Volcanic Zone melt inclusions exhibit higher K2O and Ce/Yb relative to Healy melt inclusions reflecting the assimilation of continental lithosphere. Quantitative trace element modelling of melt inclusion compositions: (a) demonstrates that magma genesis occurred through 62 - 76% fractional crystallisation at Healy whereas assimilation of continental lithosphere (greywacke) in addition to 60 - 80% fractional crystallisation is required for the Taupo Volcanic Zone magmas; and (b) suggests the presence of crystal mush bodies beneath silicic magma chambers in both continental and oceanic arc environments. Water concentrations of melt inclusions ranged between 1.4 - 5.1 wt% for the Whakamaru, Taupo and Healy samples. However, the inconsistency in the measured molecular water to hydroxyl concentrations of melt inclusions relative to those determined experimentally for groundmass rhyolitic glasses provide evidence for the degassing of inclusions prior to quenching, by diffusion of hydroxyl groups through the crystal host. Thus, partial pressures of water estimated from the inclusions and inferred depths of the crystallising magma bodies are underestimated. Chemical profiles of mineral zonation, however, indicate a more complex origin of silicic melts than simple fractionation and assimilation. For example, trace element modelling of Whakamaru plagioclase suggests that the three distinct textural plagioclase populations present in Whakamaru samples crystallised from four physiochemically discrete silicic melts. This modelling indicates a strong petrogenetic link between andesitic and silicic magmas from the chemical variation of selected Whakamaru plagioclase crystals possessing high anorthite (45-60 mol %) cores and low anorthite (~ 30 mol %) rim compositions and the interaction of greywacke partial melts. Furthermore, Sr diffusion modelling of core-rim interfaces of the same plagioclase crystals indicate the amalgamation of the magma chamber occurred continuously over the 15,000 years preceding the climactic eruption. Conversely, the major element zonation of Taupo plagioclases implies magma genesis occurred solely through assimilation and fractional crystallisation without the incorporation of evolved crystal mush magmas, indicating a spectrum of magmatic processes are occurring beneath the Taupo Volcanic Zone with each eruption providing only a snapshot of the petrogenesis of the Taupo Volcanic Zone.</p>


2021 ◽  
Author(s):  
Joao Duarte ◽  
Nicolas Riel ◽  
Chiara Civiero ◽  
Sonia Silva ◽  
Filipe Rosas ◽  
...  

Abstract The Earth’s surface is constantly being recycled by plate tectonics. Subduction of oceanic lithosphere and delamination of continental lithosphere constitute the two most important mechanisms by which the Earth’s lithosphere is recycled into the mantle. Delamination or detachment in continental regions typically occurs below mountain belts due to a weight excess of overthickened lithospheric mantle, which detaches from overlying lighter crust, aided by the existence of weak layers within the continental lithosphere. Oceanic lithosphere is classically pictured as a rigid plate with a strong core that does not allow for delamination to occur. Here, we propose that active delamination of oceanic lithosphere occurs offshore Southwest Iberia. The process is assisted by the existence of a lithospheric serpentinized layer that allows the lower part of the lithosphere to decouple from the overlying crust. Tomography images reveal a sub-lithospheric high-velocity anomaly below this region, which we interpret as a delaminating block of old oceanic lithosphere. We present numerical models showing that for a geological setting mimicking offshore Southwest Iberia delamination of oceanic lithosphere is possible and may herald subduction initiation, which is a long-unsolved problem in the theory of plate tectonics. We further propose that such oceanic delamination is responsible for the highest-magnitude earthquakes in Europe, including the M8.5-8.7 Great Lisbon Earthquake of 1755 and the M7.9 San Vincente earthquake of 1969. In particular, our numerical models, in combination with calculations on seismic potential, provide a solution for the instrumentally recorded 1969 event below the flat Horseshoe abyssal plain, away from mapped tectonics faults. Delamination of old oceanic lithosphere near passive margins constitutes a new class of subduction initiation mechanisms, with fundamental implications for the dynamics of the Wilson cycle.


Lithos ◽  
2021 ◽  
pp. 106494
Author(s):  
B. Chiasera ◽  
T.O. Rooney ◽  
I.D. Bastow ◽  
G. Yirgu ◽  
E.B. Grosfils ◽  
...  

Author(s):  
Frederic Mouthereau ◽  
Paul Angrand ◽  
Anthony Jourdon ◽  
Sébastien Ternois ◽  
Charlotte Fillon ◽  
...  

The architecture and nature of the continental lithosphere result from billions of years of tectonic and magmatic evolution. Continental deformation over broad regions form collisional orogens which evolution is controlled by the interactions between properties inherited from hits long-lasting evolution and plate kinematics. The analysis of present-day kinematic patterns and geophysical imaging of lithosphere structure can provide clues on these interactions. However how these interactions are connected through time and space to control topographic evolution in collision zones is unknown. Here we explore the case of the Cenozoic mountain building and topographic evolution of Western Europe. We first review the tectono-magmatic evolution of the lithosphere of Europe based on the exploitation of geological, geochronological and geochemical constraints from ophiolites, mafic rocks and xenoliths data. Combined with the analyses of low-temperature thermochronological and plate kinematic constraints we discuss the key controlling parameters of the topography. We show that among the required ingredients is the primary effect of plume-, rift- and subduction-related metasomatic events on lithosphere composition. Those main events occurred during the Neoproterozoic (750-500 Ma) and the late Carboniferous-Permian (310-270 Ma). They resulted in the thinning and weakening of the sub-continental lithospheric mantle of Europe. Contrasting lithosphere strengths and plate-mantle coupling in Western Europe with respect to the cratonic lithosphere of West Africa Craton and Baltica is the first-order parameter that explain the observed strain and stress patterns. Subsequent magmatic and thinning episodes, including those evidenced by the opening of the early Jurassic Alpine Tethys and the CAMP event, followed by late Jurassic and early Cretaceous crustal thinning, prevented thermal relaxation of the lithosphere and allowed further weakening of the European lithosphere. The spatial and temporal evolution of topographic growth resolved by the episodes of increased exhumation show two main periods of mountain building. During the late Cretaceous-early Cenozoic (80-50 Ma) contractional deformation was distributed from North Africa to Europe, but the topographic response to the onset of Africa-Eurasia convergence is detected only in central Europe. The lack of rapid exhumation signal in southern Europe and north Africa reveal that the initial continental accretion in these regions was accommodated under water in domains characterized by thin continental or oceanic crust. The second phase of orogenic uplift period starts at about 50 Ma between the High Atlas and the Pyrenees. This second key period reflects the time delay required for the wider rift systems positioned between Africa and Europe to close, likely promoted by the acceleration of convergence. Tectonic regime then became extensional in northern Europe as West European Rift (WER) opened. This event heralds the opening of the Western Mediterranean between Adria and Iberia at ca. 35 Ma. While mature orogenic systems developed over Iberia at this time, the eastern domain around northern Adria (Alps) was still to be fully closed. This kinematic and mechanical conditions triggered the initiation of backarc extension, slab retreat and delamination in the absence of strong slab pull forces. From about 20 Ma, the high temperature in the shallow asthenosphere and magmatism trapped in the mantle lithosphere contributed to topographic uplift. The first period (80-20 Ma) reveals spatially variable onset of uplift in Europe that are arguably controlled by inherited crustal architecture, superimposed on the effect of large-scale lithospheric properties. The second period marks a profound dynamic change, as sub-lithospheric processes became the main drivers. The channelized mantle flow from beneath Morocco to Central Europe builds the most recent topography. In this study, we have resolved when, where and how inheritance at lithospheric and crustal levels rule mountain building processes. More studies focus on the tectonic-magmatic evolution of the continental lithosphere are needed. We argue that when they are combined with plate reconstructions and thermochronological constraints the relative impact of inheritance and plate convergence on the orogenic evolution can be resolved.


2021 ◽  
Author(s):  
Sophie Pan ◽  
Rebecca E. Bell ◽  
Christopher A‐L. Jackson ◽  
John Naliboff

Sign in / Sign up

Export Citation Format

Share Document