surface uplift
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 31)

H-INDEX

39
(FIVE YEARS 0)

2022 ◽  
Author(s):  
B. Tikoff ◽  
C. Siddoway ◽  
D. Sokoutis ◽  
E. Willingshofer

ABSTRACT The Bighorn uplift, Wyoming, developed in the Rocky Mountain foreland during the 75–55 Ma Laramide orogeny. It is one of many crystalline-cored uplifts that resulted from low-amplitude, large-wavelength folding of Phanerozoic strata and the basement nonconformity (Great Unconformity) across Wyoming and eastward into the High Plains region, where arch-like structures exist in the subsurface. Results of broadband and passive-active seismic studies by the Bighorn EarthScope project illuminated the deeper crustal structure. The seismic data show that there is substantial Moho relief beneath the surface exposure of the basement arch, with a greater Moho depth west of the Bighorn uplift and shallower Moho depth east of the uplift. A comparable amount of Moho relief is observed for the Wind River uplift, west of the Bighorn range, from a Consortium for Continental Reflection Profiling (COCORP) profile and teleseismic receiver function analysis of EarthScope Transportable Array seismic data. The amplitude and spacing of crystalline-cored uplifts, together with geological and geophysical data, are here examined within the framework of a lithospheric folding model. Lithospheric folding is the concept of low-amplitude, large-wavelength (150–600 km) folds affecting the entire lithosphere; these folds develop in response to an end load that induces a buckling instability. The buckling instability focuses initial fold development, with faults developing subsequently as shortening progresses. Scaled physical models and numerical models that undergo layer-parallel shortening induced by end loads determine that the wavelength of major uplifts in the upper crust occurs at approximately one third the wavelength of folds in the upper mantle for strong lithospheres. This distinction arises because surface uplifts occur where there is distinct curvature upon the Moho, and the vergence of surface uplifts can be synthetic or antithetic to the Moho curvature. In the case of the Bighorn uplift, the surface uplift is antithetic to the Moho curvature, which is likely a consequence of structural inheritance and the influence of a preexisting Proterozoic suture upon the surface uplift. The lithospheric folding model accommodates most of the geological observations and geophysical data for the Bighorn uplift. An alternative model, involving a crustal detachment at the orogen scale, is inconsistent with the absence of subhorizontal seismic reflectors that would arise from a throughgoing, low-angle detachment fault and other regional constraints. We conclude that the Bighorn uplift—and possibly other Laramide arch-like structures—is best understood as a product of lithospheric folding associated with a horizontal end load imposed upon the continental margin to the west.







2021 ◽  
Vol 95 (S1) ◽  
pp. 70-72
Author(s):  
Matthew J. COMEAU ◽  
Michael BECKEN ◽  
Alexey V. KUVSHINOV ◽  
Alexander GRAYVER ◽  
Johannes KÄUFL ◽  
...  


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 2) ◽  
Author(s):  
Emily J. Kleber ◽  
Duane E. DeVecchio ◽  
J. Ramón Arrowsmith ◽  
Tammy M. Rittenour

Abstract The Wheeler Ridge anticline, located in the southern San Joaquin Valley of California, USA, is a well-studied and classic example of a laterally growing fault propagation fold. New high-resolution lidar elevation data combined with nine infrared stimulated luminescence (IRSL) ages of discrete geomorphic surfaces that are bounded by prominent transverse wind and river gaps allow for investigation of tectonic topography through time. Luminescence ages from four of the six surfaces yield depositional ages that range from 32 ka to 153 ka, which are broadly consistent with a previously published soil chronosequence. Our graphical modeling indicates an average surface uplift rate of ~2.1 mm/yr and an average along-strike fold propagation rate of ~20 mm/yr. However, our probabilistic modelling and topographic analysis suggest a rate decrease of both uplift and lateral propagation toward the fault tip from ~2.4 to 0.7 mm/yr and from ~49 to 14 mm/yr, respectively. Rate decreases are not progressive but rather occur in punctuated deformational intervals across previously documented structural barriers (tear faults) resulting in a fold that is characterized by discrete segments that exhibit a systematic deformational decrease toward the east. The punctuated tectonic growth of Wheeler Ridge has also locally controlled the topographic evolution of the anticline by effecting the formational timing and position of at least seven wind and river gaps that result from multiple north-flowing antecedent streams that traverse the growing structure. We quantify the timing of wind and river gap formation, based on IRSL results and inferred incision rates, and present a model for the spatiotemporal evolution of transverse drainages and the topographic development of Wheeler Ridge. Our chronology of gap formation broadly correlates with regional Late Pleistocene dry climate intervals suggesting that both tectonics and climate were integral to the geomorphic development of the Wheeler Ridge anticline.



Author(s):  
Jian Zhao ◽  
Heinz Konietzky ◽  
Martin Herbst ◽  
Roy Morgenstern

AbstractNumerical simulation approaches have been widely applied to study mining induced subsidence, and they are potential methods to study the flooding induced uplift for abandoned mines. This paper gives an overview about different numerical approaches to simulate uplift induced by flooding abandoned underground mines, including three different hydraulic conditions, considering both unconfined and confined water conditions. Four basic simulation schemes using 1-dimensional rock column models verified by analytical solutions demonstrate these procedures. The results reveal that flooding induced uplift is mainly related to the pore pressure in the mine goaf. The parameter study documents that height and stiffness of the mine goaf have the strongest influence on maximum surface uplift.



2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Chen

The continental lower crust is an important composition- and strength-jump layer in the lithosphere. Laboratory studies show its strength varies greatly due to a wide variety of composition. How the lower crust rheology influences the collisional orogeny remains poorly understood. Here I investigate the role of the lower crust rheology in the evolution of an orogen subject to horizontal shortening using 2D numerical models. A range of lower crustal flow laws from laboratory studies are tested to examine their effects on the styles of the accommodation of convergence. Three distinct styles are observed: 1) downwelling and subsequent delamination of orogen lithosphere mantle as a coherent slab; 2) localized thickening of orogen lithosphere; and 3) underthrusting of peripheral strong lithospheres below the orogen. Delamination occurs only if the orogen lower crust rheology is represented by the weak end-member of flow laws. The delamination is followed by partial melting of the lower crust and punctuated surface uplift confined to the orogen central region. For a moderately or extremely strong orogen lower crust, topography highs only develop on both sides of the orogen. In the Tibetan plateau, the crust has been doubly thickened but the underlying mantle lithosphere is highly heterogeneous. I suggest that the subvertical high-velocity mantle structures, as observed in southern and western Tibet, may exemplify localized delamination of the mantle lithosphere due to rheological weakening of the Tibetan lower crust.



2021 ◽  
Author(s):  
Sam Treweek

<p><b>The differing structural evolution of cratonic East Antarctica and younger West Antarctica has resulted in contrasting lithospheric and asthenospheric mantle viscosities between the two regions. Combined with poor constraints on the upper mantle viscosity structure of the continent, estimates of surface uplift in Antarctica predicted from models of glacial isostatic adjustment (GIA) and observed by Global Satellite Navigation System (GNSS) contain large misfits. This thesis presents a gravity study ofthe lithospheric transition zone beneath the Taylor Valley, Antarctica, conducted to constrain the variation in lithological parameters such as viscosity and density of the upper mantle across this region.</b></p> <p>During this study 119 new gravity observations were collected in the ice-free regions of the Taylor Valley and amalgamated with 154 existing land-based gravity observations, analysed alongside aerogravity measurements of southern Victoria Land. Gravity data are used to construct 2D gravity models of the subsurface beneath this region. An eastward gradient in Bouguer anomalies of ~- 1.6 mGal/km is observed within the Taylor Valley. Models reveal thickening of the Moho from 23±5 km beneath the Ross Sea to 35±5 km in the Polar Plateau (dipping at 24.5±7.2°), and lithospheric mantle 100 km thicker in East Antarctica (~200±30 km) than West Antarctica (~90±30 km). </p> <p>Models of predicted surface uplift history are used to estimate an asthenospheric mantle viscosity of 2.1x1020 Pa.s at full surface recovery beneath the Ross Embayment, differing by ~14% from the viscosity at 50% recovery. The temperature contrast between lithospheric and asthenospheric mantle is estimated as ~400°C, equivalent to a viscosity that decreases by a factor of about 30 over the mantle boundary.</p> <p>Results demonstrate that the history of surface uplift in the study area may be complicated, resulting in observations of uplift, or subsidence, at GNSS stations. Future work should incorporate additional geophysical methods, such as seismicity and electrical resistivity, improving constraints on gravity models. A better understanding of the surface uplift (or subsidence) history in the Transantarctic Mountains is critical, with implications in reducing uncertainty in GIA models.</p>



2021 ◽  
Author(s):  
Sam Treweek

<p><b>The differing structural evolution of cratonic East Antarctica and younger West Antarctica has resulted in contrasting lithospheric and asthenospheric mantle viscosities between the two regions. Combined with poor constraints on the upper mantle viscosity structure of the continent, estimates of surface uplift in Antarctica predicted from models of glacial isostatic adjustment (GIA) and observed by Global Satellite Navigation System (GNSS) contain large misfits. This thesis presents a gravity study ofthe lithospheric transition zone beneath the Taylor Valley, Antarctica, conducted to constrain the variation in lithological parameters such as viscosity and density of the upper mantle across this region.</b></p> <p>During this study 119 new gravity observations were collected in the ice-free regions of the Taylor Valley and amalgamated with 154 existing land-based gravity observations, analysed alongside aerogravity measurements of southern Victoria Land. Gravity data are used to construct 2D gravity models of the subsurface beneath this region. An eastward gradient in Bouguer anomalies of ~- 1.6 mGal/km is observed within the Taylor Valley. Models reveal thickening of the Moho from 23±5 km beneath the Ross Sea to 35±5 km in the Polar Plateau (dipping at 24.5±7.2°), and lithospheric mantle 100 km thicker in East Antarctica (~200±30 km) than West Antarctica (~90±30 km). </p> <p>Models of predicted surface uplift history are used to estimate an asthenospheric mantle viscosity of 2.1x1020 Pa.s at full surface recovery beneath the Ross Embayment, differing by ~14% from the viscosity at 50% recovery. The temperature contrast between lithospheric and asthenospheric mantle is estimated as ~400°C, equivalent to a viscosity that decreases by a factor of about 30 over the mantle boundary.</p> <p>Results demonstrate that the history of surface uplift in the study area may be complicated, resulting in observations of uplift, or subsidence, at GNSS stations. Future work should incorporate additional geophysical methods, such as seismicity and electrical resistivity, improving constraints on gravity models. A better understanding of the surface uplift (or subsidence) history in the Transantarctic Mountains is critical, with implications in reducing uncertainty in GIA models.</p>



2021 ◽  
Vol 73 (2) ◽  
pp. A090221
Author(s):  
Santiago Noriega-Londoño ◽  
Mauricio A. Bermúdez ◽  
Sergio Andrés Restrepo-Moreno ◽  
María Isabel Marín-Cerón ◽  
Helbert García-Delgado

In this contribution, DInSAR analysis, seismic/brittle strain rates, and seismic uplift estimations were used to evaluate ground deformation patterns of the 24 December 2019 Mw 5.8 Mesetas Earthquake that occurred in the Mesetas municipality (Meta, Colombia), on the eastern foothills of Colombian’s Eastern Cordillera, near the Serranía de la Macarena. According to the focal mechanisms computed for this earthquake, the right-lateral Algeciras Fault System was responsible for the rupture event. Primary and secondary SAR images from December 18/2019 and 30/2019, respectively, were used to calculate coseismic ground deformation of the study area. Geocoded line-of-sight (LOS) displacement image suggests that major ground deformation was on the order of 0.2 m for the 24 December discrete seismic event, while the accumulated seismic contribution to surface uplift during 1993 to 2020 reached values of ca. 0.14 m/yr. In contrast, seismic/brittle strain rates and seismic uplift estimations show that this part of South America is currently experiencing deformation at a rate of 4.1×10-16 ± 1.7×10-17s-1 and uplift at a rate of 81.5 ± 3.4 m/Ma during 2018-2020, whereas the deformation was 0.1×10-16 ± 0.2 ×10-17s-1 at a rate of 2.2 ± 0.5 m/Ma between 1993-2018.



Sign in / Sign up

Export Citation Format

Share Document