scholarly journals Moderate Prenatal Ethanol Exposure Stimulates CXCL12/CXCR4 Chemokine System in Radial Glia Progenitor Cells in Hypothalamic Neuroepithelium and Peptide Neurons in Lateral Hypothalamus of the Embryo and Postnatal Offspring

2020 ◽  
Vol 44 (4) ◽  
pp. 866-879 ◽  
Author(s):  
Guo‐Qing Chang ◽  
Adam D. Collier ◽  
Olga Karatayev ◽  
Gazal Gulati ◽  
Devi Sai Sri Kavya Boorgu ◽  
...  
2019 ◽  
Author(s):  
Guo-Qing Chang ◽  
Olga Karatayev ◽  
Devi Sai Sri Kavya Boo ◽  
Sarah F. Leibowitz

Abstract Background: Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. Methods : Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system’s role in ethanol’s actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. Results: We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol’s sexually dimorphic actions. Conclusions: These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol’s long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.


2002 ◽  
Vol 67 (6) ◽  
pp. 2425-2433 ◽  
Author(s):  
S. Vallés ◽  
M. Sancho-Tello ◽  
R. Miñana ◽  
E. Climent ◽  
J. Renau-Piqueras ◽  
...  

2011 ◽  
Vol 229 (2) ◽  
pp. 364-371 ◽  
Author(s):  
María Paula Aronne ◽  
Tamara Guadagnoli ◽  
Paula Fontanet ◽  
Sergio Gustavo Evrard ◽  
Alicia Brusco

2020 ◽  
Author(s):  
Guo-Qing Chang ◽  
Olga Karatayev ◽  
Devi Sai Sri Kavya Boo ◽  
Sarah F. Leibowitz

Abstract Background: Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons.Methods: Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system’s role in ethanol’s actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. Results: We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol’s sexually dimorphic actions.Conclusions: These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol’s long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.


Author(s):  
C. Uphoff ◽  
C. Nyquist-Battie

Fetal Alcohol Syndrone (FAS) is a syndrome with characteristic abnormalities resulting from prenatal exposure to ethanol. In many children with FAS syndrome gross pathological changes in the heart are seen with septal defects the most prevalent abnormality recorded. Few studies in animal models have been performed on the effects of ethanol on heart development. In our laboratory, it has been observed that prenatal ethanol exposure of Swiss albino mice results in abnormal cardiac muscle ultrastructure when mice were examined at birth and compared to pairfed and normal controls. Fig. 1 is an example of the changes that are seen in the ethanol-exposed animals. These changes include enlarged mitochondria with loss of inner mitochondrial membrane integrity and loss of myofibrils. Morphometric analysis substantiated the presence of these alterations from normal cardiac ultrastructure. The present work was undertaken to determine if the pathological changes seen in the newborn mice prenatally exposed to ethanol could be reversed with age and abstinence.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
A Kunze ◽  
S Grass ◽  
O.W Witte ◽  
G Kempermann ◽  
C Redecker

Alcohol ◽  
1989 ◽  
Vol 6 (6) ◽  
pp. 469-473 ◽  
Author(s):  
Dolores López-Tejero ◽  
Miquel Llobera ◽  
Emilio Herrera

Sign in / Sign up

Export Citation Format

Share Document