male offspring
Recently Published Documents


TOTAL DOCUMENTS

985
(FIVE YEARS 311)

H-INDEX

58
(FIVE YEARS 9)

Author(s):  
Christina Savva ◽  
Luisa A. Helguero ◽  
Marcela González-Granillo ◽  
Tânia Melo ◽  
Daniela Couto ◽  
...  

Abstract Objective The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. Methods Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. Results We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. Conclusion Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ana Laura de la Garza ◽  
Bianca Romero-Delgado ◽  
Alejandra Mayela Martínez-Tamez ◽  
Marcela Cárdenas-Tueme ◽  
Bianka Dianey Camacho-Zamora ◽  
...  

Background: There is increasing evidence that gut microbiota in offspring is derived in part from maternal environment such as diet. Thus, sweeteners intake including caloric or non-caloric during perinatal period can induce gut dysbiosis and program the offspring to develop cognitive problems later in life.Objective: To determine the effect of maternal high-sweeteners intake during gestation and lactation on gut microbiota shifts in adult male offspring rats and the impact on cognitive dysfunction.Methods: Thirty-four male pups from dams fed standard diet (Control-C, n = 10), high-sucrose diet (HS-C, n = 11), high-honey diet (Ho-C, n = 8), and high-stevia diet (HSt-C, n = 5) were fed standard diet after weaning, and body weight and food intake were recorded once a week for 26 weeks. Learning and memory tests were performed at week 23 of life using the Barnes maze. Fecal samples from the breastfeeding and adulthood periods were collected and analyzed by sequencing the 16S rRNA V3-V4 region of gut microbiota.Results: Maternal high-sucrose and stevia diets programmed the male offspring, and changes in microbial diversity by Shannon index were observed after weaning (p < 0.01). Furthermore, maternal high-stevia diet programming lasted into adulthood. The increase of Firmicutes abundance and the decrease in phylum Bacteroidetes were significant in HS-C and HSt-C groups. This led to an increase in the Firmicutes/Bacteroidetes index, although only in HS-C group was statistically significant (p < 0.05). Of note, the downstream gram-negative Bacteroidales and the upregulation of the gram-positive Clostridiales abundance contribute to cognitive dysfunction.Conclusion: These results suggest that dams fed a high-sucrose and stevia diets during gestation and lactation favor a deficient memory performance in adult male offspring rats through shifts gut microbiota diversity and relative abundance at several taxa.


Author(s):  
Lidia E Martínez Gascón ◽  
Maria C. Ortiz ◽  
Maria Galindo ◽  
Jose Miguel Sanchez ◽  
Natalia Sancho-Rodriguez ◽  
...  

Intrauterine programming of cardiovascular and renal function occurs in diabetes because of the adverse maternal environment. Heme oxygenase 1 (HO-1) and -2 (HO-2) exert vasodilatory, and antioxidant actions, particularly in conditions of elevated HO-1 expression, or deficient nitric oxide levels. We evaluated whether the activity of the heme-HO system is differentially regulated by oxidative stress in the female offspring of diabetic mothers, contributing to the improved cardiovascular function compared to male. Diabetes was induced in pregnant rats by a single dose of Streptozotocin (STZ, 50mg/kg i.p) in late gestation. Three months old male offspring from diabetic mothers (MOD) exhibited higher blood pressure values (BP), higher renal vascular resistance (RVR), worse endothelium -dependent response to Acetylcholine and an increased constrictor response to Phenylephrine, compared to those in aged matched female (FOD), which were abolished by chronic Tempol (1mM) treatment. In anesthetized animals, Stannous mesoporphyrin (SnMP; 40 µmol/kg i.v.) administration, to inhibit HO activity, increased RVR in FOD and reduced glomerular filtration rate in MOD, without altering these parameters in control animals. Compared to MOD, FOD showed lower nitrotirosyne levels, and higher HO-1 protein expression in renal homogenates. Indeed, chronic treatment with Tempol to MOD, prevented elevations in nitrotyrosine levels, and the acute renal hemodynamics response to SnMP. Then, maternal diabetes results in sex specific hypertension, and renal alterations associated to oxidative stress, mainly in adult male offspring, which are reduced in the female offspring, by elevation in HO-1 expression and lower oxidative stress levels.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12738
Author(s):  
Louise Ramhøj ◽  
Karen Mandrup ◽  
Ulla Hass ◽  
Terje Svingen ◽  
Marta Axelstad

Polybrominated diphenyl ethers (PBDEs) are legacy compounds with continued widespread human exposure. Despite this, developmental toxicity studies of DE-71, a mixture of PBDEs, are scarce and its potential for endocrine disrupting effects in vivo is not well covered. To address this knowledge gap, we carried out a developmental exposure study with DE-71. Pregnant Wistar rat dams were exposed to 0, 40 or 60 mg/kg bodyweight/day from gestation day 7 to postnatal day 16, and both sexes were examined. Developmental exposure affected a range of reproductive toxicity endpoints. Effects were seen for both male and female anogenital distances (AGD), with exposed offspring of either sex displaying around 10% shorter AGD compared to controls. Both absolute and relative prostate weights were markedly reduced in exposed male offspring, with about 40% relative to controls. DE-71 reduced mammary gland outgrowth, especially in male offspring. These developmental in vivo effects suggest a complex effect pattern involving anti-androgenic, anti-estrogenic and maybe estrogenic mechanisms depending on tissues and developmental stages. Irrespective of the specific underlying mechanisms, these in vivo results corroborate that DE-71 causes endocrine disrupting effects and raises concern for the effects of PBDE-exposure on human reproductive health, including any potential long-term consequences of disrupted mammary gland development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Negisa Seyed Toutounchi ◽  
Saskia Braber ◽  
Belinda van’t Land ◽  
Suzan Thijssen ◽  
Johan Garssen ◽  
...  

Deoxynivalenol (DON), a highly prevalent contaminant of grain-based products, is known to induce reproductive- and immunotoxicities. Considering the importance of immune development in early life, the present study investigated the effects of perinatal DON exposure on allergy development and vaccine responsiveness in the offspring. Pregnant mice received control or DON-contaminated diets (12.5 mg/kg diet) during pregnancy and lactation. After weaning, female offspring were sensitized to ovalbumin (OVA) by oral administration of OVA with cholera toxin (CT). Male offspring were injected with Influvac vaccine. OVA-specific acute allergic skin response (ASR) in females and vaccine-specific delayed-type hypersensitivity (DTH) in males were measured upon intradermal antigen challenge. Immune cell populations in spleen and antigen-specific plasma immunoglobulins were analyzed. In female CT+OVA-sensitized offspring of DON-exposed mothers ASR and OVA-specific plasma immunoglobulins were significantly higher, compared to the female offspring of control mothers. In vaccinated male offspring of DON-exposed mothers DTH and vaccine-specific antibody levels were significantly lower, compared to the male offspring of control mothers. In both models a significant reduction in regulatory T cells, Tbet+ Th1 cells and Th1-related cytokine production of the offspring of DON-exposed mothers was observed. In conclusion, early life dietary exposure to DON can adversely influence immune development in the offspring. Consequently, the immune system of the offspring may be skewed towards an imbalanced state, resulting in an increased allergic immune response to food allergens and a decreased immune response to vaccination against influenza virus in these models.


Author(s):  
Ubong Edem David ◽  
Jerome Ndudi Asiwe ◽  
Adesoji Adedipe Fasanmade

Abstract Objectives Pregnancy is a critical period keenly regulated by both maternal and foetal factors and a shift in these factors could result in severe complications manifesting in foetal and adult life. However, maternal hypothyroidism before and/or during pregnancy is a critical factor. This study investigated the effect of maternal hypothyroidism on glucose tolerance and thyroid function in male and female offspring. Methods Fifteen adult female Wistar rats were divided into three groups: Group 1 (sham-control), Group 2 (thyrodectomized) and Group 3 (thyroidectomised + L-thyroxine treated). Blood thyroxine (T4) level was measured on the day 10 after thyroidectomy in Groups 1 and 2, and day 35 in Group 3. Males were introduced to the female rats after T4 measurement. At PND-112, T4 levels of their offspring were measured. Oral Glucose Tolerance Test (OGTT) was measured in offspring at PND-133. Results Thyroxine reduced significantly in Group 2 and their offspring (male and female) compared to Group 3 while gestation period was prolonged significantly in Group 2 compared to Group 1. Hypothyroid male offspring showed depressed glucose tolerance, however, no effect was observed in female offspring. Conclusions This study suggests that maternal hypothyroidism prolonged gestation period, induced foetal hypothyroidism in both genders and depressed glucose tolerance in male offspring.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hannah Hafner ◽  
Molly C. Mulcahy ◽  
Zach Carlson ◽  
Phillip Hartley ◽  
Haijing Sun ◽  
...  

Maternal metabolic disease and diet during pregnancy and lactation have important implications for the programming of offspring metabolic disease. In addition, high-fat diets during pregnancy and lactation can predispose the offspring to non-alcoholic fatty liver disease (NAFLD), a rising health threat in the U.S. We developed a model of maternal high-fat feeding exclusively during the lactation period. We previously showed that offspring from dams, given lactational high-fat diet (HFD), are predisposed to obesity, glucose intolerance, and inflammation. In separate experiments, we also showed that lactational metformin treatment can decrease offspring metabolic risk. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21-day lactation period. A subset of dams was also given metformin as a co-treatment. Starting at weaning, the offspring were fed normal fat diet until 3 months of age; at which point, a subset was challenged with an additional HFD stressor. Lactational HFD led male offspring to develop hepatic insulin resistance. The post-weaning HFD challenge led male offspring to progress to NAFLD with more severe outcomes in the lactational HFD-challenged offspring. Co-administration of metformin to lactating dams on HFD partially rescued the offspring liver metabolic defects in males. Lactational HFD or post-weaning HFD had no impact on female offspring who maintained a normal insulin sensitivity and liver phenotype. These findings indicate that HFD, during the lactation period, programs the adult offspring to NAFLD risk in a sexually dimorphic manner. In addition, early life intervention with metformin via maternal exposure may prevent some of the liver programming caused by maternal HFD.


Sign in / Sign up

Export Citation Format

Share Document