Biased estimation with shared parameter models in the presence of competing dropout mechanisms

Biometrics ◽  
2021 ◽  
Author(s):  
Edward F. Vonesh ◽  
Tom Greene
Keyword(s):  
Author(s):  
Zhi-fu Wang ◽  
Xian-wei Yu ◽  
Jing Zhang ◽  
Na Li ◽  
Wei Zhao ◽  
...  

1996 ◽  
Vol 5 (3) ◽  
pp. 323-334
Author(s):  
Milan Merkle
Keyword(s):  

2018 ◽  
Vol 72 (3) ◽  
pp. 741-758 ◽  
Author(s):  
W.I. Liu ◽  
Zhixiong Li ◽  
Zhichao Zhang

A Laser Scanning aided Inertial Navigation System (LSINS) is able to provide highly accurate position and attitude information by aggregating laser scanning and inertial measurements under the assumption that the rigid transformation between sensors is known. However, a LSINS is inevitably subject to biased estimation and filtering divergence errors due to inconsistent state estimations between the inertial measurement unit and the laser scanner. To bridge this gap, this paper presents a novel integration algorithm for LSINS to reduce the inconsistences between different sensors. In this new integration algorithm, the Radial Basis Function Neural Networks (RBFNN) and Singular Value Decomposition Unscented Kalman Filter (SVDUKF) are used together to avoid inconsistent state estimations. Optimal error estimation in the LSINS integration process is achieved to reduce the biased estimation and filtering divergence errors through the error state and measurement error model built by the proposed method. Experimental tests were conducted to evaluate the navigation performance of the proposed method in Global Navigation Satellite System (GNSS)-denied environments. The navigation results demonstrate that the relationship between the laser scanner coordinates and the inertial sensor coordinates can be established to reduce sensor measurement inconsistencies, and LSINS position accuracy can be improved by 23·6% using the proposed integration method compared with the popular Extended Kalman Filter (EKF) algorithm.


1989 ◽  
Vol 48 (2) ◽  
pp. 331-339 ◽  
Author(s):  
D. A. Elston ◽  
C. A. Glasbey ◽  
D. R. Neilson

ABSTRACTLactation curves are fitted to data as a preliminary to estimating summary statistics. Two widely quoted curves are atbe-ct (Wood, 1967) and a(1 - e-bt) - ct (Cobby and Le Du, 1978), each of which has three parameters. Restriction to either of these curves imposes limitations on the fit to the data and can result in biased estimation of summary statistics. Alternatively, lactation curves can be generated by the use of a non-parametric method which requires only weak assumptions about the signs of derivatives of the curves. Because the non-parametric curves are more flexible, estimates of summary statistics are less likely to be biased than those based on parametric models. Use of the non-parametric curves is particularly advantageous around the time of peak yield, where the curves of Wood and Cobby and Le Du are known to fit data poorly.


Sign in / Sign up

Export Citation Format

Share Document